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This sequence certainly has limit 0 and so, by Theorem 5.1.8, the Riemann integral
exists. To find what it is, we need a formula for the sum 3>} _, k*. Such a formula
exists. In fact, it can be proved by induction (Exercise 5.1.3) that
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This expression has limit 1/3 as n — oo and so / z3dx =1/3.
0
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Exercise Set 5.1

1. Find the upper sum U(f, P) and lower sum L(f, P) if f(z) =1/z on (1,2] and
P is the partition of [1,2] into four subintervals of equal length.
1
2. Prove that ¢ dz exists by computing U(f, P,) and L(f, P,) for the function

0
f(z) = = and a partition P, of [0,1] into n equal subintervals. Then show that
condition (5.1.7) of Theorem 5.1.8 is satisfied. Calculate the integral by taking
the limit of the upper sums. Hint: Use Exercise 1.2.9.

3. Prove by induction that
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4. Prove that z?dr =

]

by expressing this integral as a limit of Riemann

= w|

0
sums and finding the limi

5. Let f be the function on [0, 1] which is 0 at every rational number and 1 at
every irrational number. Is this function integrable on [0,1]? Prove that your
answer is correct by using the definition of the integral.

6. Prove that the upper sum U (f, P) for a partition of [a, b] and a bounded function
f on [a, b] is the least upper bound of the set of all Riemann sums for f and P.

7. Finish the proof of Theorem 5.1.4 by showing that if the theorem is true when
only one element is added to P to obtain €, then it is also true no matter how
many elements need to be added to P to obtain Q.

8. Suppose m and M are lower and upper bounds for f on [a,b]; in other words,
m < f(z) < M for all € [a,b]. Prove that
b —b
m(b—a) < / flz)dz < / f(z)dz < M(b—a).

b
What conclusion about / f(z) dz do you draw from this if the integral exists?
a
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9. If k is a constant and [a, b] is a bounded interval, prove that k is integrable on
la,b] and

b
/ kdr = k(b — a).
10. If f is a bounded function on [a,b] and P = {z¢ < z; < --- < z,} is a partition
of {a, b, show that

n

U(f,P) = L(f, P) = ) (M) — my)(zx — zx-1),
k=1

where My, is the sup and my the inf of f on [zx—1,zx]. What does this simplify
to if P is a partition of [a, b] into n equal subintervals?
11. Suppose f is any non-decreasing function on a bounded interval [a,b]. If P, is
the partition of [a, b] into n equal subintervals, show that
b—a
—

U(f, Pn) = L(f, Pa) = (f(b) - f(a))

What do you conclude about the integrability of f?

R

5.2. Existence and Properties of the Integral

We first show that the integral exists for a large class of functions, a class which
includes all the functions of interest to us in this course. We then show that the
integral has the properties claimed for it in calculus courses.

Existence Theorems.
Theorem 5.2.1. If f is a monotone function on a closed bounded interval [a, B],

then f is integrable on [a,b)].

Proof. This was essentially stated as an exercise (Exercise 5.1.11) in the previous
section. In that exercise, it is claimed that, if f is a non-decreasing function on
[a,b] and P, is the partition of [a, b] into n equal subintervals, then

b—a

(5.2.1) U(f, Pn) = L(f, P) = (f(b) — f(a))
This implies that

n

hm(U(fv Pn) - L(fa Pn)) =0
and, by Theorem 5.1.8, this implies that the Riemann integral of f on [a, b] exists.
In the case where f is non-increasing, the same proof works. The only difference
is that f(b) — f(a) is replaced by f(a) — f(b) in (5.2.1). d

Theorem 5.2.2. If f is a continuous function on a closed, bounded interval {a, 8],
then f is integrable on [a, b].
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But [€f(z)dz is the sup of all numbers of the form L(Q, f) for Q a partition of
la,c], and L(f, P) = L(f, P'") + L(L, P"). Tt follows from Theorem 1.5.7(c) that

b c
/ f(@)de + / f(z) dz = sup L(P", f) + sup L(P", f)
doa _b Pl PII

= sup{L(P', 1) + (", 1)} = [ f(z) da,

where P’ and P” range over arbitrary partitions of [a,b] and [b,c]. This proves
the theorem for lower integrals. The proof for upper integrals is essentially the
same. a

This theorem has as a corollary the interval additivity property for the integral.
The details of how this corollary follows from the above theorem are left to the
exercises.

Corollary 5.2.9. With f and a < b < ¢ as in the previous theorem, f is integrable
on [a,c] if and only if it is integrable on [a,b] and on [b,c]. In this case,

/:f(m)dx: /abf(:c)dw-i—/bcf(x)dm.

A Stronger Existence Theorem. Another consequence of the interval addi-
tivity theorem (Theorem 5.2.8) is the following stronger version of the existence
theorem for integrals of continuous functions (Theorem 5.2.2). The proof is left to
the exercises.

Theorem 5.2.10. If f is a bounded function on a closed bounded interval {a,b]
and f is continuous except at finitely many points of [a,b], then f is integrable on

[a,b].

]
Exercise Set 5.2

1. Show that if a function f on a bounded interval can be written in the form g—h
for functions g and h which are non-decreasing on [a, b], then f is integrable on
a, b].

2. If f is a bounded function defined on a closed bounded interval [a, b] and if f is
integrable on each interval [a, 7] with a < 7 < b, then prove that f is integrable

on [a,b] and
b T
[ @) de =ty [ )

Observe that the analogous result holds if [a,r] is replaced by [r,b] in the
hypothesis and in the integral on the right and the limit is taken as r» — a.
Hint: Use Theorem 5.2.8 and Exercise 5.1.8.

3. Prove Theorem 5.2.10. That is, prove that if f is a bounded function on a
bounded interval [a,b] and f is continuous except at finitely many points in
[a,b], then f is integrable on [a,b]. Hint: Use the preceding exercise, interval
additivity, and an induction argument on the number of discontinuities.
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4. Prove Corollary 5.2.5.

5. Prove Corollary 5.2.9.

10.

11.

12.
13.

14.

1

Prove that 1 < / -
11

pon dr <2forallneN,

2

1
Prove that / i —dz <2/3 for all n € N.
1 14z

. If f is a bounded function defined on an interval I, then prove that

sup|f| —inf |f| < sup f —inf f
I I 1 I

by using the triangle inequality, |f(z)| - |f(y)| < |f(z) — f(y)|, and Theorem
1.5.10(d).

Prove that if f is integrable on [a, b], then so is f2. Hint: If | f(z)| < M for all
z € [a,b], then show that

IF2(z) = f2(9)| < 2M|f(z) - f(w)]
for all ¢,y € [a,b]. Use this to estimate U(f2, P)—L(f2,P), for a given partition
P, in terms of U(f, P) — L(f, P).
Prove that if f and g are integrable on [a, b, then so is fg. Hint: Write fg as
the difference of two squares of functions you know are integrable and then use
the previous exercise.
Give an example of a function f such that |f| is integrable on [0, 1] but f is not
integrable on [0, 1].
Prove Theorem 5.2.7.
Let {fn} be a sequence of integrable functions defined on a closed bounded

interval [a,b]. If {f,} converges uniformly on [a,b] to a function f, prove that
f is integrable and

/abf(x) dx = lim/abfn(m)dx.

Is the function which is sin1/x for  # 0 and 0 for z = 0 integrable on [0, 1]?
Justify your answer.

5.3. The Fundamental Theorems of Calculus

There are two fundamental theorems of calculus. Both relate differentiation to
integration. In most calculus courses, the Second Fundamental Theorem is usually
proved first and then used to prove the First Fundamental Theorem. Unfortunately,
this results in a First Fundamental Theorem that is weaker than it could be. To
prove the best possible theorems, one should give independent proofs of the two
theorems. This is what we shall do.




