The first of the above limits is $\lim_{a\to\infty} -1/2\ln(1+a^2) = -\infty$ while the second is $\lim_{b\to\infty} 1/2\ln(1+b^2) = \infty$. Neither of these converges and so the improper integral does not converge. However, the Cauchy principal value is

$$\lim_{a \to \infty} \int_{-a}^{a} \frac{x}{1 + x^2} dx = \lim_{a \to \infty} 1/2(\ln a - \ln a) = 0.$$

Exercise Set 5.4

- 1. Supply the details for the proof of Theorem 5.4.3.
- 2. Prove that $\ln\left(\frac{a}{b}\right) = \ln a \ln b$ for all $a, b \in (0, +\infty)$.
- 3. Finish the proof of Theorem 5.4.4 by showing that $\lim_{x\to 0} \ln x = -\infty$. Hint: This follows easily from $\lim_{x\to\infty} \ln x = +\infty$ and properties of \ln .
- 4. Prove part (b) of Theorem 5.4.7.
- 5. Using Definition 5.4.8 and the properties of exp prove the laws of exponents:

$$a^{x+y} = a^x a^y$$
 and $a^{xy} = (a^x)^y$.

- 6. Compute the derivative of a^x for each a > 0.
- 7. Find an antiderivative for a^x for each a > 0.
- 8. Prove Theorem 5.4.9.
- 9. For which values of p > 0 does the improper integral $\int_1^\infty \frac{1}{x^p} dx$ converge? Justify your answer.
- 10. For which values of p > 0 does the improper integral $\int_0^1 \frac{1}{x^p} dx$ converge? Justify your answer.
- 11. Show that $\int_{-\infty}^{\infty} \frac{\sin x}{1+x^2} dx$ converges. Can you tell what it converges to?
- 12. Does the improper integral $\int_0^1 \ln x \, dx$ converge? If so, what does it converge to?
- 13. Suppose that f and g are non-negative functions on \mathbb{R} which are integrable on each finite interval [a, b] and that $f(x) \leq g(x)$ for all $x \in \mathbb{R}$. Show that if the improper integral $\int_{-\infty}^{\infty} f(x) dx$ diverges, then so does the improper integral $\int_{-\infty}^{\infty} g(x) dx$.
- 14. Prove that if f is integrable on every interval [a, b] on \mathbb{R} and if f is an odd function, then f has Cauchy principal value 0.

- 15. Prove that the improper integral $\int_{-\infty}^{\infty} \frac{x^{1/3}}{\sqrt{1+x^2}} dx$ does not converge but that it has Cauchy principal value 0.
- 16. Prove that if f is an integrable function on every interval [a,s) with s < b and if $f(x) \ge 0$ on [a,b], then the function $F(s) = \int_a^s f(x) \, dx$ is a non-decreasing function on [a,b).