REAL ANALYSIS
Math 127A-A, Winter 2019
Final: Solutions

1. [15pts] Let A C R.
a) Define what it means for x € R to be an isolated point of A.

(
(b) Define what it means for z € R to be a limit point of A.
(¢) Define the closure A of A.

Solution

e (a) A real number = € R is an isolated point of A if x € A and there
exists € > 0 such that z is the only point of A in the interval (z—e, z+¢€).

e (b) A real number z € R is a limit point of A C R if for every ¢ > 0
there exists a € A with a # z such that a € (x —e€,x+¢€). Equivalently,
x € R is a limit point of A C R if there is a sequence (a,) of points
a, € A with a, # x such that a, — x as n — oo.

e (c) The following are equivalent definitions: (i) A= AU L where L is
the set of limit points of A; (ii) A is the set of limits of all convergent
sequences in A; (iii) A is the intersection of all closed sets that contain

A.



2. [20pts] Say if the following statements are true or false. If true, give a brief
explanation (a complete proof is not required); if false, give a counterexample.

(a) If f: R — R is continuous and I = (0,1), then f(/) is open.
(b) If f:R — R is continuous and I = [0, 1], then f([) is closed.

(c) If (z,) is a Cauchy sequence of real numbers, then {z,, : n € N} is
compact.

(d) If A C R is compact and B C R is closed, then AN B is compact.

Solution

e (a) False. For example, if f(z) = (z — 1/2)?, then f ((0,1)) = [0,1/4)

isn’t open.

e (b) True. The interval [0,1] is compact, so its continuous image is
compact and therefore closed.

e (c) False. For example, the sequence (1/n) converges so it is Cauchy,
but its limit 0 doesn’t belong to the set A = {1/n:n € N}, so A isn’t
closed.

e (d) True. Since A is compact it’s closed and bounded. Then AN B is
closed and bounded, since the intersection of closed sets is closed and
AN B C Ais bounded, so AN B is compact.



3. [10pts] Prove that the polynomial equation 2° — 3z + 1 = 0 has a root in
the interval 0 < x < 1.

Solution

e The polynomial function p(z) = z° — 3z + 1 is continuous on [0, 1]
and p(0) =1 >0, p(1) = —1 < 0, so the intermediate value theorem
implies that there exists 0 < ¢ < 1 such that p(c) = 0.



4. [20pts] Prove that
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e From the hint, we have T,, — 7%/6 and Ty, — 72/6 as n — co. Taking
the limit of the previous equation as n — oo, we get that
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5. [20pts| (a) Define the supremum sup A of a set A C R.
(b) Define the sum of sets A,BCRby A+ B={a+b:ac A be B}. If

A, B are nonempty sets that are bounded from above, prove that

sup(A + B) = sup A + sup B.

Solution

e (a) M = sup A is the least upper bound of A. That is, z < M for every
x € A, and for any € > 0 there exists x € A such that x > M — e.

e (b) Let L = supA and M = sup B (which exist by the Dedekind
completeness axiom for R).

e lfr=a+be A+ B, then x < L+ M, since L is an upper bound of A
and M is an upper bound of B, so L + M is an upper bound of A+ B.

e Given any € > 0, there exists a € A such that a > L —¢/2 and b € B
such that b > M —¢€/2. It follows that a +b > L+ M — ¢, which shows
that L + M is the least upper bound of A + B and proves the result.



6. [20pts| (a) State the density property of the rational numbers @ in the
real numbers R.

(b) Let the sequence (r,,) be an enumeration of the rational numbers in (0, 1),
meaning that there is a one-to-one, onto function f : N — QN (0,1) such
that r, = f(n). Prove that liminf,, . 7, = 0 and limsup,,_, .7, = 1.

Solution

e (a) For every z,y € R with # < y, there exists r € Q such that
r<r<y.

e (b) Consider
limsupr, = lim sup{rg : k > n}.
n—00 n—oo
Since r, < 1 for every n € N, we have sup{ry : k >n} < 1. If M <1,
then repeated application of the density property implies that there
exist infinitely many rational numbers r € Q such that M <r < 1. It
follows that for every n € N there exists k& > n such that M < r, < 1,
so sup{ry : k > n} =1, and limsup,,_, . r, = 1.

e A similar argument shows that inf{r, : k£ > n} = 0 for every n € N,
and liminf, . r, = 0.



7. [25pts] (a) Suppose that f: A — R and ¢ € R is a limit point of A C R.
State the e-9 definition of lim, . f(x) = L.

(b) Prove from the e-§ definition that lim, .. f(z) = L if and only for every
sequence (z,) in A such that z,, # ¢ and z, — ¢, one has f(z,) — L.

Solution

e (a) lim, . f(z) = L if for every € > 0 there exists § > 0 such that
|f(z) —L| <eforallz € Awith 0 < |z —¢| <.

e First, assume that lim,_,. f(x) = L, and suppose that (z,,) is a sequence
in A such that =, # ¢ and x,, — ¢. Let € > 0 be given. Choose § > 0
such that |f(z) — L| < e for all x € A with 0 < |z —¢| < §. Since
x, — ¢, there exists N € N such that |z, —¢| < 0 for all n > N, so
|f(z,) — L| < € for all n > N, which proves that f(z,) — L.

e To show that the sequential condition implies the limit, we prove the
contrapositive statement.

e Assume that f(z) doesn’t converge to L as © — ¢. Then there exists
€0 > 0 such that for every § > 0 there exists x € A with 0 < |[x —¢| < §
and |f(x) — L| > €. Taking § = 1/n for n € N, we find that there
exists z, € A with 0 < |z, — ¢| < 1/n and |f(x,) — L| > €. It follows
that (z,) is a sequence in A with z,, # ¢ and z,, — ¢, but (f(x,))
doesn’t converge to L, so the sequential condition doesn’t hold.



