
Real Analysis
Math 127A-A, Winter 2019

Final: Solutions

1. [15pts] Let A ⊂ R.

(a) Define what it means for x ∈ R to be an isolated point of A.

(b) Define what it means for x ∈ R to be a limit point of A.

(c) Define the closure Ā of A.

Solution

• (a) A real number x ∈ R is an isolated point of A if x ∈ A and there
exists ε > 0 such that x is the only point of A in the interval (x−ε, x+ε).

• (b) A real number x ∈ R is a limit point of A ⊂ R if for every ε > 0
there exists a ∈ A with a 6= x such that a ∈ (x− ε, x+ ε). Equivalently,
x ∈ R is a limit point of A ⊂ R if there is a sequence (an) of points
an ∈ A with an 6= x such that an → x as n→∞.

• (c) The following are equivalent definitions: (i) Ā = A ∪ L where L is
the set of limit points of A; (ii) Ā is the set of limits of all convergent
sequences in A; (iii) Ā is the intersection of all closed sets that contain
A.
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2. [20pts] Say if the following statements are true or false. If true, give a brief
explanation (a complete proof is not required); if false, give a counterexample.

(a) If f : R→ R is continuous and I = (0, 1), then f(I) is open.

(b) If f : R→ R is continuous and I = [0, 1], then f(I) is closed.

(c) If (xn) is a Cauchy sequence of real numbers, then {xn : n ∈ N} is
compact.

(d) If A ⊂ R is compact and B ⊂ R is closed, then A ∩B is compact.

Solution

• (a) False. For example, if f(x) = (x − 1/2)2, then f ((0, 1)) = [0, 1/4)
isn’t open.

• (b) True. The interval [0, 1] is compact, so its continuous image is
compact and therefore closed.

• (c) False. For example, the sequence (1/n) converges so it is Cauchy,
but its limit 0 doesn’t belong to the set A = {1/n : n ∈ N}, so A isn’t
closed.

• (d) True. Since A is compact it’s closed and bounded. Then A ∩ B is
closed and bounded, since the intersection of closed sets is closed and
A ∩B ⊂ A is bounded, so A ∩B is compact.
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3. [10pts] Prove that the polynomial equation x5 − 3x+ 1 = 0 has a root in
the interval 0 < x < 1.

Solution

• The polynomial function p(x) = x5 − 3x + 1 is continuous on [0, 1]
and p(0) = 1 > 0, p(1) = −1 < 0, so the intermediate value theorem
implies that there exists 0 < c < 1 such that p(c) = 0.
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4. [20pts] Prove that
∞∑
n=1

1

(2n− 1)2
=
π2

8
.

Justify all your steps. Hint. You can assume that
∑∞

n=1 1/n2 = π2/6.

Solution

• Let

Sn =
n∑

k=1

1

(2k − 1)2
, Tn =

n∑
k=1

1

k2
.

Then

Sn =
1

12
+

1

32
+

1

52
+ · · ·+ 1

(2n− 1)2

=
1

12
+

1

22
+

1

32
+

1

42
+

1

52
+ · · ·+ 1

(2n− 1)2
+

1

(2n)2

−
[

1

22
+

1

42
+ · · ·+ 1

(2n)2

]
= T2n −

1

4
Tn.

• From the hint, we have Tn → π2/6 and T2n → π2/6 as n→∞. Taking
the limit of the previous equation as n→∞, we get that

∞∑
n=1

1

(2n− 1)2
= lim

n→∞
Sn =

π2

6
− 1

4

π2

6
=
π2

8
.
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5. [20pts] (a) Define the supremum supA of a set A ⊂ R.

(b) Define the sum of sets A,B ⊂ R by A + B = {a + b : a ∈ A, b ∈ B}. If
A, B are nonempty sets that are bounded from above, prove that

sup(A+B) = supA+ supB.

Solution

• (a) M = supA is the least upper bound of A. That is, x ≤M for every
x ∈ A, and for any ε > 0 there exists x ∈ A such that x > M − ε.

• (b) Let L = supA and M = supB (which exist by the Dedekind
completeness axiom for R).

• If x = a+ b ∈ A+B, then x ≤ L+M , since L is an upper bound of A
and M is an upper bound of B, so L+M is an upper bound of A+B.

• Given any ε > 0, there exists a ∈ A such that a > L − ε/2 and b ∈ B
such that b > M − ε/2. It follows that a+ b > L+M − ε, which shows
that L+M is the least upper bound of A+B and proves the result.
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6. [20pts] (a) State the density property of the rational numbers Q in the
real numbers R.

(b) Let the sequence (rn) be an enumeration of the rational numbers in (0, 1),
meaning that there is a one-to-one, onto function f : N → Q ∩ (0, 1) such
that rn = f(n). Prove that lim infn→∞ rn = 0 and lim supn→∞ rn = 1.

Solution

• (a) For every x, y ∈ R with x < y, there exists r ∈ Q such that
x < r < y.

• (b) Consider
lim sup
n→∞

rn = lim
n→∞

sup{rk : k ≥ n}.

Since rn < 1 for every n ∈ N, we have sup{rk : k ≥ n} ≤ 1. If M < 1,
then repeated application of the density property implies that there
exist infinitely many rational numbers r ∈ Q such that M < r < 1. It
follows that for every n ∈ N there exists k ≥ n such that M < rk < 1,
so sup{rk : k ≥ n} = 1, and lim supn→∞ rn = 1.

• A similar argument shows that inf{rk : k ≥ n} = 0 for every n ∈ N,
and lim infn→∞ rn = 0.
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7. [25pts] (a) Suppose that f : A→ R and c ∈ R is a limit point of A ⊂ R.
State the ε-δ definition of limx→c f(x) = L.

(b) Prove from the ε-δ definition that limx→c f(x) = L if and only for every
sequence (xn) in A such that xn 6= c and xn → c, one has f(xn)→ L.

Solution

• (a) limx→c f(x) = L if for every ε > 0 there exists δ > 0 such that
|f(x)− L| < ε for all x ∈ A with 0 < |x− c| < δ.

• First, assume that limx→c f(x) = L, and suppose that (xn) is a sequence
in A such that xn 6= c and xn → c. Let ε > 0 be given. Choose δ > 0
such that |f(x)− L| < ε for all x ∈ A with 0 < |x − c| < δ. Since
xn → c, there exists N ∈ N such that |xn − c| < δ for all n > N , so
|f(xn)− L| < ε for all n > N , which proves that f(xn)→ L.

• To show that the sequential condition implies the limit, we prove the
contrapositive statement.

• Assume that f(x) doesn’t converge to L as x → c. Then there exists
ε0 > 0 such that for every δ > 0 there exists x ∈ A with 0 < |x− c| < δ
and |f(x) − L| ≥ ε0. Taking δ = 1/n for n ∈ N, we find that there
exists xn ∈ A with 0 < |xn − c| < 1/n and |f(xn)− L| ≥ ε0. It follows
that (xn) is a sequence in A with xn 6= c and xn → c, but (f(xn))
doesn’t converge to L, so the sequential condition doesn’t hold.
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