Math 127A-A, Winter 2019
Final: Solutions

1. $[15 \mathrm{pts}]$ Let $A \subset \mathbb{R}$.
(a) Define what it means for $x \in \mathbb{R}$ to be an isolated point of A.
(b) Define what it means for $x \in \mathbb{R}$ to be a limit point of A.
(c) Define the closure \bar{A} of A.

Solution

- (a) A real number $x \in \mathbb{R}$ is an isolated point of A if $x \in A$ and there exists $\epsilon>0$ such that x is the only point of A in the interval $(x-\epsilon, x+\epsilon)$.
- (b) A real number $x \in \mathbb{R}$ is a limit point of $A \subset \mathbb{R}$ if for every $\epsilon>0$ there exists $a \in A$ with $a \neq x$ such that $a \in(x-\epsilon, x+\epsilon)$. Equivalently, $x \in \mathbb{R}$ is a limit point of $A \subset \mathbb{R}$ if there is a sequence $\left(a_{n}\right)$ of points $a_{n} \in A$ with $a_{n} \neq x$ such that $a_{n} \rightarrow x$ as $n \rightarrow \infty$.
- (c) The following are equivalent definitions: (i) $\bar{A}=A \cup L$ where L is the set of limit points of A; (ii) \bar{A} is the set of limits of all convergent sequences in A; (iii) \bar{A} is the intersection of all closed sets that contain A.

2. [20pts] Say if the following statements are true or false. If true, give a brief explanation (a complete proof is not required); if false, give a counterexample.
(a) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $I=(0,1)$, then $f(I)$ is open.
(b) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $I=[0,1]$, then $f(I)$ is closed.
(c) If $\left(x_{n}\right)$ is a Cauchy sequence of real numbers, then $\left\{x_{n}: n \in \mathbb{N}\right\}$ is compact.
(d) If $A \subset \mathbb{R}$ is compact and $B \subset \mathbb{R}$ is closed, then $A \cap B$ is compact.

Solution

- (a) False. For example, if $f(x)=(x-1 / 2)^{2}$, then $f((0,1))=[0,1 / 4)$ isn't open.
- (b) True. The interval $[0,1]$ is compact, so its continuous image is compact and therefore closed.
- (c) False. For example, the sequence $(1 / n)$ converges so it is Cauchy, but its limit 0 doesn't belong to the set $A=\{1 / n: n \in \mathbb{N}\}$, so A isn't closed.
- (d) True. Since A is compact it's closed and bounded. Then $A \cap B$ is closed and bounded, since the intersection of closed sets is closed and $A \cap B \subset A$ is bounded, so $A \cap B$ is compact.

3. [10pts] Prove that the polynomial equation $x^{5}-3 x+1=0$ has a root in the interval $0<x<1$.

Solution

- The polynomial function $p(x)=x^{5}-3 x+1$ is continuous on $[0,1]$ and $p(0)=1>0, p(1)=-1<0$, so the intermediate value theorem implies that there exists $0<c<1$ such that $p(c)=0$.

4. [20pts] Prove that

$$
\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}=\frac{\pi^{2}}{8}
$$

Justify all your steps. Hint. You can assume that $\sum_{n=1}^{\infty} 1 / n^{2}=\pi^{2} / 6$.

Solution

- Let

$$
S_{n}=\sum_{k=1}^{n} \frac{1}{(2 k-1)^{2}}, \quad T_{n}=\sum_{k=1}^{n} \frac{1}{k^{2}}
$$

Then

$$
\begin{aligned}
S_{n}= & \frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots+\frac{1}{(2 n-1)^{2}} \\
= & \frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\cdots+\frac{1}{(2 n-1)^{2}}+\frac{1}{(2 n)^{2}} \\
& \quad-\left[\frac{1}{2^{2}}+\frac{1}{4^{2}}+\cdots+\frac{1}{(2 n)^{2}}\right] \\
= & T_{2 n}-\frac{1}{4} T_{n} .
\end{aligned}
$$

- From the hint, we have $T_{n} \rightarrow \pi^{2} / 6$ and $T_{2 n} \rightarrow \pi^{2} / 6$ as $n \rightarrow \infty$. Taking the limit of the previous equation as $n \rightarrow \infty$, we get that

$$
\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}=\lim _{n \rightarrow \infty} S_{n}=\frac{\pi^{2}}{6}-\frac{1}{4} \frac{\pi^{2}}{6}=\frac{\pi^{2}}{8}
$$

5. [20pts] (a) Define the supremum $\sup A$ of a set $A \subset \mathbb{R}$.
(b) Define the sum of sets $A, B \subset \mathbb{R}$ by $A+B=\{a+b: a \in A, b \in B\}$. If A, B are nonempty sets that are bounded from above, prove that

$$
\sup (A+B)=\sup A+\sup B
$$

Solution

- (a) $M=\sup A$ is the least upper bound of A. That is, $x \leq M$ for every $x \in A$, and for any $\epsilon>0$ there exists $x \in A$ such that $x>M-\epsilon$.
- (b) Let $L=\sup A$ and $M=\sup B$ (which exist by the Dedekind completeness axiom for \mathbb{R}).
- If $x=a+b \in A+B$, then $x \leq L+M$, since L is an upper bound of A and M is an upper bound of B, so $L+M$ is an upper bound of $A+B$.
- Given any $\epsilon>0$, there exists $a \in A$ such that $a>L-\epsilon / 2$ and $b \in B$ such that $b>M-\epsilon / 2$. It follows that $a+b>L+M-\epsilon$, which shows that $L+M$ is the least upper bound of $A+B$ and proves the result.

6. [20pts] (a) State the density property of the rational numbers \mathbb{Q} in the real numbers \mathbb{R}.
(b) Let the sequence $\left(r_{n}\right)$ be an enumeration of the rational numbers in $(0,1)$, meaning that there is a one-to-one, onto function $f: \mathbb{N} \rightarrow \mathbb{Q} \cap(0,1)$ such that $r_{n}=f(n)$. Prove that $\liminf _{n \rightarrow \infty} r_{n}=0$ and $\lim \sup _{n \rightarrow \infty} r_{n}=1$.

Solution

- (a) For every $x, y \in \mathbb{R}$ with $x<y$, there exists $r \in \mathbb{Q}$ such that $x<r<y$.
- (b) Consider

$$
\limsup _{n \rightarrow \infty} r_{n}=\lim _{n \rightarrow \infty} \sup \left\{r_{k}: k \geq n\right\} .
$$

Since $r_{n}<1$ for every $n \in \mathbb{N}$, we have $\sup \left\{r_{k}: k \geq n\right\} \leq 1$. If $M<1$, then repeated application of the density property implies that there exist infinitely many rational numbers $r \in \mathbb{Q}$ such that $M<r<1$. It follows that for every $n \in \mathbb{N}$ there exists $k \geq n$ such that $M<r_{k}<1$, so $\sup \left\{r_{k}: k \geq n\right\}=1$, and $\lim \sup _{n \rightarrow \infty} r_{n}=1$.

- A similar argument shows that $\inf \left\{r_{k}: k \geq n\right\}=0$ for every $n \in \mathbb{N}$, and $\liminf { }_{n \rightarrow \infty} r_{n}=0$.

7. [25pts] (a) Suppose that $f: A \rightarrow \mathbb{R}$ and $c \in \mathbb{R}$ is a limit point of $A \subset \mathbb{R}$. State the $\epsilon-\delta$ definition of $\lim _{x \rightarrow c} f(x)=L$.
(b) Prove from the $\epsilon-\delta$ definition that $\lim _{x \rightarrow c} f(x)=L$ if and only for every sequence $\left(x_{n}\right)$ in A such that $x_{n} \neq c$ and $x_{n} \rightarrow c$, one has $f\left(x_{n}\right) \rightarrow L$.

Solution

- (a) $\lim _{x \rightarrow c} f(x)=L$ if for every $\epsilon>0$ there exists $\delta>0$ such that $|f(x)-L|<\epsilon$ for all $x \in A$ with $0<|x-c|<\delta$.
- First, assume that $\lim _{x \rightarrow c} f(x)=L$, and suppose that $\left(x_{n}\right)$ is a sequence in A such that $x_{n} \neq c$ and $x_{n} \rightarrow c$. Let $\epsilon>0$ be given. Choose $\delta>0$ such that $|f(x)-L|<\epsilon$ for all $x \in A$ with $0<|x-c|<\delta$. Since $x_{n} \rightarrow c$, there exists $N \in \mathbb{N}$ such that $\left|x_{n}-c\right|<\delta$ for all $n>N$, so $\left|f\left(x_{n}\right)-L\right|<\epsilon$ for all $n>N$, which proves that $f\left(x_{n}\right) \rightarrow L$.
- To show that the sequential condition implies the limit, we prove the contrapositive statement.
- Assume that $f(x)$ doesn't converge to L as $x \rightarrow c$. Then there exists $\epsilon_{0}>0$ such that for every $\delta>0$ there exists $x \in A$ with $0<|x-c|<\delta$ and $|f(x)-L| \geq \epsilon_{0}$. Taking $\delta=1 / n$ for $n \in \mathbb{N}$, we find that there exists $x_{n} \in A$ with $0<\left|x_{n}-c\right|<1 / n$ and $\left|f\left(x_{n}\right)-L\right| \geq \epsilon_{0}$. It follows that $\left(x_{n}\right)$ is a sequence in A with $x_{n} \neq c$ and $x_{n} \rightarrow c$, but $\left(f\left(x_{n}\right)\right)$ doesn't converge to L, so the sequential condition doesn't hold.

