REAL ANALYSIS
Math 127A-B, Winter 2019
Final: Solutions

1. [15pts] Give precise and complete statements of the following theorems.
(a) The alternating series test.

(b) The extreme value theorem.

(

c¢) The intermediate value theorem.

Solution

e (a) If (a,) is a decreasing sequence of positive numbers a,, > 0 such
that a, — 0, then Y > (—1)"*!a, converges.

e (b) If f: K — R is continuous on a compact set K, then f is bounded
and attains its maximum and minimum values.

e (c) If f:]a,b] — R is continuous and f(a) < L < f(b) or f(b) < L <
f(a), then there exists a < ¢ < b such that f(c) = L.



2. [20pts] Say if the following statements are true or false. If true, give a brief
explanation (a complete proof is not required); if false, give a counterexample.

(a) If (x,,) is a bounded sequence of real numbers and lim sup z,, < lim inf z,,,
then (z,) converges.

(b) If a set A C R has the property that for every ¢ > 0 there exists z,y € A
such that 0 < |z — y| < ¢, then A has a limit point.

(c) If A C R is bounded, then the closure of A is compact.

(d)If K1 D Ky D--- D K, D--- is a nested sequence of nonempty compact
sets K, C Rand A =Ny, K,, then sup K,, = sup A as n — oo.

Solution

e (a) True. We always have limsupz, > liminfz,, so limsupz, =
lim inf 2,,, which implies that (x,) converges.

e (b) False. For example, A =NU {n+ 1/n:n € N} satisfies the given
condition, but every point in A is an isolated point of A.

e (c) True. If A is bounded, then A is bounded, and A is always closed,
so A is compact.

e (d) True. Since the K,, and A are compact and nonempty, they contain
their suprema. If b, = max K, then (b,) is bounded and decreasing,
so b, — b € R. Since K, is closed, we have b € K,, for every n € N,
so b € A, which implies that b < max A. Also, since A C K,,, we have
max A < b,, so max A < b, meaning that b = max A and max K,, —
max A.

e As a special case, if the K,, = [a,,b,] are nested compact intervals,
then A = [a, b] where a,, T a and b, | b.



3. [15pts] (a) Suppose that f: A — R and ¢ € R is a limit point of A C R.
State the e-9 definition of lim, . f(x) = L.
(b) Let A =[0,00) \ {9}, and define f : A — R by

r—9
f) = ==

Prove from the e-0 definition that lim, .9 f(z) = 6. Write your proof starting
with the statement: “Let ¢ > 0 be given.”

Solution

e (a) lim, . f(z) = L if for every € > 0 there exists § > 0 such that
|f(z) — L| <eforall z € Awith 0 < |z —c| <.

e (b) Let € > 0 be given. Choose § = 3e. Then 0 < |z — 9] < § implies

that
r—9
—6| = —6
) -0 = | =55 =
= [Vz +3 - 6]
- vz -3
B r—9
VT +3
< oo
g —
=3
1
< =0
3
< €,

which proves the result.



4. [20pts] Let 0 < a < 1 and define z,, = na™ for n € N.

(a) Prove that there exists N € N and 0 < K < 1 such that z,,,; < Kz, for
all n > N.

(b) Show that lim,, ., na™ = 0.
Solution

e (a) We have

Tn+41
T

1
:<1—|——>a—>a as n — oo.
n

Taking ¢ = (1 —a)/2 > 0 in the N definition of the limit, we get
that there exists N € N such that x,,1/x, < K for all n > N where
K=(1+a)/2<1

e (b) It follows from (a) that 0 < xy4, < K'zy for all » > 0. Since
K" — 0asr — oo for 0 < K < 1, the squeeze theorem implies that
z, — 0 as n — oo.



5. [20pts] (a) Prove by induction that for every n € N, we have

"k n -+ 2
> =2 (1)
k=1
(b) Deduce that
Yoo
2n
n=1

You can assume the result of Problem 4(b).

Solution

e (a) One verifies immediately that (1) holds for n = 1. Suppose that
(1) holds for some n € N. Then

kR k n+l
Zﬁzzz_k—'—gnﬂ
k=1 k=1
n+2 n+1
:2_ 2n 2n+1
_2_(n+1)+2
2n+1 ?

so (1) holds for n+1, and the result follows for every n € N by induction.

e (b) Since 1/2" — 0 and n/2™ — 0, we get that

Remark. A geometrical proof for the sum of this series was given by the
medieval philosopher and mathematician Nicole Oresme around 1350.



6. [20pts] (a) State the Bolzano-Weierstrass theorem.

(b) Suppose that (z,) is a bounded sequence of real numbers with the prop-
erty that every convergent subsequence converges to the same limit L € R.
Prove that (z,) converges to L. HINT. Assume that (x,) doesn’t converge
to L and derive a contradiction.

(c) Can a divergent sequence have the property that every convergent sub-
sequence converges to the same limit?

Solution

e (a) Every bounded sequence of real numbers has a convergent subse-
quence.

e (b) Suppose for contradiction that (z,) does not converge to L. Then
there exists ¢y > 0 such that for every N € N there exists n > N
with |z, — L| > €. It follows that we can choose a subsequence (z,, )
with ny < ny < --- < ng < ... such that |z,, — L| > € for every
k € N. This subsequence is bounded, since (z,,) is bounded, so by the
Bolzano-Weierstrass theorem, we can extract a convergent subsequence
of (x,,). This subsequence is a convergent subsequence of (x,,), but it
cannot converge to L, contradicting our assumption. It follows that
(x,) must converge to L.

e (c) Yes. For example, the divergent sequence (z,) with x,, = n has
no convergent subsequences, so it satisfies this condition vacuously.
Alternatively, the only convergent subsequences of the sequence (x,,)
with

In . .
1 ifniseven

{n if n is odd

are the ones whose terms are eventually equal to 1, so all convergent
subsequences have the same limit.



7. [20pts| (a) Define what it means for f : A — R to be uniformly continuous
on A CR.

(b) Suppose that f : A — R is uniformly continuous on A. Let (z,) be
a convergent sequence in A, whose limit need not belong to A, and define
Yn = f(x,) for n € N. Prove that the sequence (y,,) converges.

(c) Does the result in (b) remain true if f : A — R is only assumed to be
continuous on A? Justify your answer.

Solution

e (a) f: A — R is uniformly continuous on A if for every € > 0 there
exists 6 > 0 such that |f(x) — f(y)| < € for every z,y € A with
|z —y| < 6.

e (b) Let € > 0. Choose ¢ > 0 such that x,y € A and |z — y| < 0 implies
that |f(z) — f(y)| < e. Since (z,) converges, it is Cauchy, so there
exists N € N such that |z, — x,| < 6 for all m,n > N. It follows that
|f(zm) — f(x,)] < e for all m,n > N, which proves that (y,) is Cauchy,
so it converges.

e (c¢) No. For example, define the continuous function f : (0,1) — R by
f(z) =1/x and let z,, = 1/n. Then x,, — 0 but f(z,) = n diverges.

Remark. A similar argument shows that if f : A — R is uniformly contin-
uous and (z,), (x]) are any sequences in A that converge to ¢, then (f(z,)),
(f(x])) converge to the same limit. It follows that a uniformly continuous
function f : A — R has a unique extension to a continuous (in fact, uni-
formly continuous) function f : A — R on the closure of the domain of f, by
defining f(c) = lim,,_,o f(z,) for z,, — ¢ at every limit point ¢ of A. As the
example in (c) shows, such an extension need not exist if f: A — R is only

continuous on A.



