
Real Analysis
Math 127A-B, Winter 2019

Final: Solutions

1. [15pts] Give precise and complete statements of the following theorems.

(a) The alternating series test.

(b) The extreme value theorem.

(c) The intermediate value theorem.

Solution

• (a) If (an) is a decreasing sequence of positive numbers an ≥ 0 such
that an → 0, then

∑∞
n=1(−1)n+1an converges.

• (b) If f : K → R is continuous on a compact set K, then f is bounded
and attains its maximum and minimum values.

• (c) If f : [a, b] → R is continuous and f(a) < L < f(b) or f(b) < L <
f(a), then there exists a < c < b such that f(c) = L.

1



2. [20pts] Say if the following statements are true or false. If true, give a brief
explanation (a complete proof is not required); if false, give a counterexample.

(a) If (xn) is a bounded sequence of real numbers and lim supxn ≤ lim inf xn,
then (xn) converges.

(b) If a set A ⊂ R has the property that for every ε > 0 there exists x, y ∈ A
such that 0 < |x− y| < ε, then A has a limit point.

(c) If A ⊂ R is bounded, then the closure of A is compact.

(d) If K1 ⊃ K2 ⊃ · · · ⊃ Kn ⊃ · · · is a nested sequence of nonempty compact
sets Kn ⊂ R and A = ∩∞n=1Kn, then supKn → supA as n→∞.

Solution

• (a) True. We always have lim supxn ≥ lim inf xn, so lim supxn =
lim inf xn, which implies that (xn) converges.

• (b) False. For example, A = N ∪ {n+ 1/n : n ∈ N} satisfies the given
condition, but every point in A is an isolated point of A.

• (c) True. If A is bounded, then Ā is bounded, and Ā is always closed,
so Ā is compact.

• (d) True. Since the Kn and A are compact and nonempty, they contain
their suprema. If bn = maxKn, then (bn) is bounded and decreasing,
so bn → b ∈ R. Since Kn is closed, we have b ∈ Kn for every n ∈ N,
so b ∈ A, which implies that b ≤ maxA. Also, since A ⊂ Kn, we have
maxA ≤ bn, so maxA ≤ b, meaning that b = maxA and maxKn →
maxA.

• As a special case, if the Kn = [an, bn] are nested compact intervals,
then A = [a, b] where an ↑ a and bn ↓ b.
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3. [15pts] (a) Suppose that f : A→ R and c ∈ R is a limit point of A ⊂ R.
State the ε-δ definition of limx→c f(x) = L.

(b) Let A = [0,∞) \ {9}, and define f : A→ R by

f(x) =
x− 9√
x− 3

.

Prove from the ε-δ definition that limx→9 f(x) = 6. Write your proof starting
with the statement: “Let ε > 0 be given.”

Solution

• (a) limx→c f(x) = L if for every ε > 0 there exists δ > 0 such that
|f(x)− L| < ε for all x ∈ A with 0 < |x− c| < δ.

• (b) Let ε > 0 be given. Choose δ = 3ε. Then 0 < |x − 9| < δ implies
that

|f(x)− 6| =
∣∣∣∣ x− 9√
x− 3

− 6

∣∣∣∣
=
∣∣√x+ 3− 6

∣∣
=
∣∣√x− 3

∣∣
=

∣∣∣∣ x− 9√
x+ 3

∣∣∣∣
≤ 1

3
|x− 9|

<
1

3
δ

< ε,

which proves the result.
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4. [20pts] Let 0 < a < 1 and define xn = nan for n ∈ N.

(a) Prove that there exists N ∈ N and 0 < K < 1 such that xn+1 ≤ Kxn for
all n ≥ N .

(b) Show that limn→∞ nan = 0.

Solution

• (a) We have

xn+1

xn
=

(
1 +

1

n

)
a→ a as n→∞.

Taking ε = (1 − a)/2 > 0 in the ε-N definition of the limit, we get
that there exists N ∈ N such that xn+1/xn < K for all n ≥ N where
K = (1 + a)/2 < 1.

• (b) It follows from (a) that 0 ≤ xN+r ≤ KrxN for all r ≥ 0. Since
Kr → 0 as r → ∞ for 0 < K < 1, the squeeze theorem implies that
xn → 0 as n→∞.
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5. [20pts] (a) Prove by induction that for every n ∈ N, we have

n∑
k=1

k

2k
= 2− n+ 2

2n
. (1)

(b) Deduce that
∞∑
n=1

n

2n
= 2.

You can assume the result of Problem 4(b).

Solution

• (a) One verifies immediately that (1) holds for n = 1. Suppose that
(1) holds for some n ∈ N. Then

n+1∑
k=1

k

2k
=

n∑
k=1

k

2k
+
n+ 1

2n+1

= 2− n+ 2

2n
+
n+ 1

2n+1

= 2− (n+ 1) + 2

2n+1
,

so (1) holds for n+1, and the result follows for every n ∈ N by induction.

• (b) Since 1/2n → 0 and n/2n → 0, we get that

∞∑
n=1

n

2n
= lim

n→∞

n∑
k=1

k

2k
= lim

n→∞

(
2− n+ 2

2n

)
= 2.

Remark. A geometrical proof for the sum of this series was given by the
medieval philosopher and mathematician Nicole Oresme around 1350.
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6. [20pts] (a) State the Bolzano-Weierstrass theorem.

(b) Suppose that (xn) is a bounded sequence of real numbers with the prop-
erty that every convergent subsequence converges to the same limit L ∈ R.
Prove that (xn) converges to L. Hint. Assume that (xn) doesn’t converge
to L and derive a contradiction.

(c) Can a divergent sequence have the property that every convergent sub-
sequence converges to the same limit?

Solution

• (a) Every bounded sequence of real numbers has a convergent subse-
quence.

• (b) Suppose for contradiction that (xn) does not converge to L. Then
there exists ε0 > 0 such that for every N ∈ N there exists n > N
with |xn − L| ≥ ε0. It follows that we can choose a subsequence (xnk

)
with n1 < n2 < · · · < nk < . . . such that |xnk

− L| ≥ ε0 for every
k ∈ N. This subsequence is bounded, since (xn) is bounded, so by the
Bolzano-Weierstrass theorem, we can extract a convergent subsequence
of (xnk

). This subsequence is a convergent subsequence of (xn), but it
cannot converge to L, contradicting our assumption. It follows that
(xn) must converge to L.

• (c) Yes. For example, the divergent sequence (xn) with xn = n has
no convergent subsequences, so it satisfies this condition vacuously.
Alternatively, the only convergent subsequences of the sequence (xn)
with

xn =

{
n if n is odd

1 if n is even

are the ones whose terms are eventually equal to 1, so all convergent
subsequences have the same limit.
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7. [20pts] (a) Define what it means for f : A→ R to be uniformly continuous
on A ⊂ R.

(b) Suppose that f : A → R is uniformly continuous on A. Let (xn) be
a convergent sequence in A, whose limit need not belong to A, and define
yn = f(xn) for n ∈ N. Prove that the sequence (yn) converges.

(c) Does the result in (b) remain true if f : A → R is only assumed to be
continuous on A? Justify your answer.

Solution

• (a) f : A → R is uniformly continuous on A if for every ε > 0 there
exists δ > 0 such that |f(x) − f(y)| < ε for every x, y ∈ A with
|x− y| < δ.

• (b) Let ε > 0. Choose δ > 0 such that x, y ∈ A and |x− y| < δ implies
that |f(x) − f(y)| < ε. Since (xn) converges, it is Cauchy, so there
exists N ∈ N such that |xm − xn| < δ for all m,n > N . It follows that
|f(xm)−f(xn)| < ε for all m,n > N , which proves that (yn) is Cauchy,
so it converges.

• (c) No. For example, define the continuous function f : (0, 1) → R by
f(x) = 1/x and let xn = 1/n. Then xn → 0 but f(xn) = n diverges.

Remark. A similar argument shows that if f : A→ R is uniformly contin-
uous and (xn), (x′n) are any sequences in A that converge to c, then (f(xn)),
(f(x′n)) converge to the same limit. It follows that a uniformly continuous
function f : A → R has a unique extension to a continuous (in fact, uni-
formly continuous) function f̄ : Ā→ R on the closure of the domain of f , by
defining f̄(c) = limn→∞ f(xn) for xn → c at every limit point c of A. As the
example in (c) shows, such an extension need not exist if f : A→ R is only
continuous on A.
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