Real Analysis
Math 127A-B, Winter 2019
Final: Solutions

1. [15pts] Give precise and complete statements of the following theorems.
(a) The alternating series test.
(b) The extreme value theorem.
(c) The intermediate value theorem.

Solution

- (a) If $\left(a_{n}\right)$ is a decreasing sequence of positive numbers $a_{n} \geq 0$ such that $a_{n} \rightarrow 0$, then $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ converges.
- (b) If $f: K \rightarrow \mathbb{R}$ is continuous on a compact set K, then f is bounded and attains its maximum and minimum values.
- (c) If $f:[a, b] \rightarrow \mathbb{R}$ is continuous and $f(a)<L<f(b)$ or $f(b)<L<$ $f(a)$, then there exists $a<c<b$ such that $f(c)=L$.

2. [20pts] Say if the following statements are true or false. If true, give a brief explanation (a complete proof is not required); if false, give a counterexample.
(a) If $\left(x_{n}\right)$ is a bounded sequence of real numbers and $\lim \sup x_{n} \leq \lim \inf x_{n}$, then $\left(x_{n}\right)$ converges.
(b) If a set $A \subset \mathbb{R}$ has the property that for every $\epsilon>0$ there exists $x, y \in A$ such that $0<|x-y|<\epsilon$, then A has a limit point.
(c) If $A \subset \mathbb{R}$ is bounded, then the closure of A is compact.
(d) If $K_{1} \supset K_{2} \supset \cdots \supset K_{n} \supset \cdots$ is a nested sequence of nonempty compact sets $K_{n} \subset \mathbb{R}$ and $A=\cap_{n=1}^{\infty} K_{n}$, then $\sup K_{n} \rightarrow \sup A$ as $n \rightarrow \infty$.

Solution

- (a) True. We always have $\lim \sup x_{n} \geq \liminf x_{n}$, so $\lim \sup x_{n}=$ $\lim \inf x_{n}$, which implies that $\left(x_{n}\right)$ converges.
- (b) False. For example, $A=\mathbb{N} \cup\{n+1 / n: n \in \mathbb{N}\}$ satisfies the given condition, but every point in A is an isolated point of A.
- (c) True. If A is bounded, then \bar{A} is bounded, and \bar{A} is always closed, so \bar{A} is compact.
- (d) True. Since the K_{n} and A are compact and nonempty, they contain their suprema. If $b_{n}=\max K_{n}$, then $\left(b_{n}\right)$ is bounded and decreasing, so $b_{n} \rightarrow b \in \mathbb{R}$. Since K_{n} is closed, we have $b \in K_{n}$ for every $n \in \mathbb{N}$, so $b \in A$, which implies that $b \leq \max A$. Also, since $A \subset K_{n}$, we have $\max A \leq b_{n}$, so $\max A \leq b$, meaning that $b=\max A$ and $\max K_{n} \rightarrow$ $\max A$.
- As a special case, if the $K_{n}=\left[a_{n}, b_{n}\right]$ are nested compact intervals, then $A=[a, b]$ where $a_{n} \uparrow a$ and $b_{n} \downarrow b$.

3. [15pts] (a) Suppose that $f: A \rightarrow \mathbb{R}$ and $c \in \mathbb{R}$ is a limit point of $A \subset \mathbb{R}$. State the $\epsilon-\delta$ definition of $\lim _{x \rightarrow c} f(x)=L$.
(b) Let $A=[0, \infty) \backslash\{9\}$, and define $f: A \rightarrow \mathbb{R}$ by

$$
f(x)=\frac{x-9}{\sqrt{x}-3} .
$$

Prove from the $\epsilon-\delta$ definition that $\lim _{x \rightarrow 9} f(x)=6$. Write your proof starting with the statement:"Let $\epsilon>0$ be given."

Solution

- (a) $\lim _{x \rightarrow c} f(x)=L$ if for every $\epsilon>0$ there exists $\delta>0$ such that $|f(x)-L|<\epsilon$ for all $x \in A$ with $0<|x-c|<\delta$.
- (b) Let $\epsilon>0$ be given. Choose $\delta=3 \epsilon$. Then $0<|x-9|<\delta$ implies that

$$
\begin{aligned}
|f(x)-6| & =\left|\frac{x-9}{\sqrt{x}-3}-6\right| \\
& =|\sqrt{x}+3-6| \\
& =|\sqrt{x}-3| \\
& =\left|\frac{x-9}{\sqrt{x}+3}\right| \\
& \leq \frac{1}{3}|x-9| \\
& <\frac{1}{3} \delta \\
& <\epsilon
\end{aligned}
$$

which proves the result.
4. [20pts] Let $0<a<1$ and define $x_{n}=n a^{n}$ for $n \in \mathbb{N}$.
(a) Prove that there exists $N \in \mathbb{N}$ and $0<K<1$ such that $x_{n+1} \leq K x_{n}$ for all $n \geq N$.
(b) Show that $\lim _{n \rightarrow \infty} n a^{n}=0$.

Solution

- (a) We have

$$
\frac{x_{n+1}}{x_{n}}=\left(1+\frac{1}{n}\right) a \rightarrow a \quad \text { as } n \rightarrow \infty .
$$

Taking $\epsilon=(1-a) / 2>0$ in the $\epsilon-N$ definition of the limit, we get that there exists $N \in \mathbb{N}$ such that $x_{n+1} / x_{n}<K$ for all $n \geq N$ where $K=(1+a) / 2<1$.

- (b) It follows from (a) that $0 \leq x_{N+r} \leq K^{r} x_{N}$ for all $r \geq 0$. Since $K^{r} \rightarrow 0$ as $r \rightarrow \infty$ for $0<K<1$, the squeeze theorem implies that $x_{n} \rightarrow 0$ as $n \rightarrow \infty$.

5. [20pts] (a) Prove by induction that for every $n \in \mathbb{N}$, we have

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{k}{2^{k}}=2-\frac{n+2}{2^{n}} \tag{1}
\end{equation*}
$$

(b) Deduce that

$$
\sum_{n=1}^{\infty} \frac{n}{2^{n}}=2
$$

You can assume the result of Problem 4(b).

Solution

- (a) One verifies immediately that (1) holds for $n=1$. Suppose that (1) holds for some $n \in \mathbb{N}$. Then

$$
\begin{aligned}
\sum_{k=1}^{n+1} \frac{k}{2^{k}} & =\sum_{k=1}^{n} \frac{k}{2^{k}}+\frac{n+1}{2^{n+1}} \\
& =2-\frac{n+2}{2^{n}}+\frac{n+1}{2^{n+1}} \\
& =2-\frac{(n+1)+2}{2^{n+1}}
\end{aligned}
$$

so (1) holds for $n+1$, and the result follows for every $n \in \mathbb{N}$ by induction.

- (b) Since $1 / 2^{n} \rightarrow 0$ and $n / 2^{n} \rightarrow 0$, we get that

$$
\sum_{n=1}^{\infty} \frac{n}{2^{n}}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{k}{2^{k}}=\lim _{n \rightarrow \infty}\left(2-\frac{n+2}{2^{n}}\right)=2
$$

Remark. A geometrical proof for the sum of this series was given by the medieval philosopher and mathematician Nicole Oresme around 1350.
6. [20pts] (a) State the Bolzano-Weierstrass theorem.
(b) Suppose that $\left(x_{n}\right)$ is a bounded sequence of real numbers with the property that every convergent subsequence converges to the same limit $L \in \mathbb{R}$. Prove that $\left(x_{n}\right)$ converges to L. Hint. Assume that $\left(x_{n}\right)$ doesn't converge to L and derive a contradiction.
(c) Can a divergent sequence have the property that every convergent subsequence converges to the same limit?

Solution

- (a) Every bounded sequence of real numbers has a convergent subsequence.
- (b) Suppose for contradiction that $\left(x_{n}\right)$ does not converge to L. Then there exists $\epsilon_{0}>0$ such that for every $N \in \mathbb{N}$ there exists $n>N$ with $\left|x_{n}-L\right| \geq \epsilon_{0}$. It follows that we can choose a subsequence ($x_{n_{k}}$) with $n_{1}<n_{2}<\cdots<n_{k}<\ldots$ such that $\left|x_{n_{k}}-L\right| \geq \epsilon_{0}$ for every $k \in \mathbb{N}$. This subsequence is bounded, since $\left(x_{n}\right)$ is bounded, so by the Bolzano-Weierstrass theorem, we can extract a convergent subsequence of $\left(x_{n_{k}}\right)$. This subsequence is a convergent subsequence of $\left(x_{n}\right)$, but it cannot converge to L, contradicting our assumption. It follows that $\left(x_{n}\right)$ must converge to L.
- (c) Yes. For example, the divergent sequence $\left(x_{n}\right)$ with $x_{n}=n$ has no convergent subsequences, so it satisfies this condition vacuously. Alternatively, the only convergent subsequences of the sequence $\left(x_{n}\right)$ with

$$
x_{n}= \begin{cases}n & \text { if } n \text { is odd } \\ 1 & \text { if } n \text { is even }\end{cases}
$$

are the ones whose terms are eventually equal to 1 , so all convergent subsequences have the same limit.
7. [20pts] (a) Define what it means for $f: A \rightarrow \mathbb{R}$ to be uniformly continuous on $A \subset \mathbb{R}$.
(b) Suppose that $f: A \rightarrow \mathbb{R}$ is uniformly continuous on A. Let $\left(x_{n}\right)$ be a convergent sequence in A, whose limit need not belong to A, and define $y_{n}=f\left(x_{n}\right)$ for $n \in \mathbb{N}$. Prove that the sequence $\left(y_{n}\right)$ converges.
(c) Does the result in (b) remain true if $f: A \rightarrow \mathbb{R}$ is only assumed to be continuous on A ? Justify your answer.

Solution

- (a) $f: A \rightarrow \mathbb{R}$ is uniformly continuous on A if for every $\epsilon>0$ there exists $\delta>0$ such that $|f(x)-f(y)|<\epsilon$ for every $x, y \in A$ with $|x-y|<\delta$.
- (b) Let $\epsilon>0$. Choose $\delta>0$ such that $x, y \in A$ and $|x-y|<\delta$ implies that $|f(x)-f(y)|<\epsilon$. Since $\left(x_{n}\right)$ converges, it is Cauchy, so there exists $N \in \mathbb{N}$ such that $\left|x_{m}-x_{n}\right|<\delta$ for all $m, n>N$. It follows that $\left|f\left(x_{m}\right)-f\left(x_{n}\right)\right|<\epsilon$ for all $m, n>N$, which proves that $\left(y_{n}\right)$ is Cauchy, so it converges.
- (c) No. For example, define the continuous function $f:(0,1) \rightarrow \mathbb{R}$ by $f(x)=1 / x$ and let $x_{n}=1 / n$. Then $x_{n} \rightarrow 0$ but $f\left(x_{n}\right)=n$ diverges.

Remark. A similar argument shows that if $f: A \rightarrow \mathbb{R}$ is uniformly continuous and $\left(x_{n}\right),\left(x_{n}^{\prime}\right)$ are any sequences in A that converge to c, then $\left(f\left(x_{n}\right)\right)$, $\left(f\left(x_{n}^{\prime}\right)\right)$ converge to the same limit. It follows that a uniformly continuous function $f: A \rightarrow \mathbb{R}$ has a unique extension to a continuous (in fact, uniformly continuous) function $\bar{f}: \bar{A} \rightarrow \mathbb{R}$ on the closure of the domain of f, by defining $\bar{f}(c)=\lim _{n \rightarrow \infty} f\left(x_{n}\right)$ for $x_{n} \rightarrow c$ at every limit point c of A. As the example in (c) shows, such an extension need not exist if $f: A \rightarrow \mathbb{R}$ is only continuous on A.

