
The lim inf and lim sup and Cauchy sequences

1 The lim sup and lim inf

We begin by stating explicitly some immediate properties of the sup and inf,
which we use below.

Proposition 1. (a) If A ⊂ R is a nonempty set, then inf A ≤ supA. (b) If
A ⊂ B, then supA ≤ supB and inf A ≥ inf B.

Proof. (a) If x ∈ A, then inf A ≤ x ≤ supA, so the result follows. (b) If A ⊂ B,
then supB is an upper bound of A, so supA ≤ supB. Similarly, inf B is a lower
bound of A, so inf A ≥ inf B.

Suppose that (xn) is a bounded sequence, meaning that there existm,M ∈ R
such that

m ≤ xn ≤M for all n ∈ N.
Let Tn ⊂ R be the set of terms of the tail of the sequence starting at xn,

Tn = {xk : k ≥ n} .

Then Tn is bounded from above by M and bounded from below m, so

yn = supTn, zn = inf Tn

exist, and
m ≤ zn ≤ yn ≤M. (1)

Moreover, Tn+1 ⊂ Tn, so yn+1 ≤ yn and zn+1 ≥ zn. It follows that (yn) is a
decreasing sequence that is bounded from below by m, and (zn) is an increasing
sequence that is bounded from above by M , so both sequences converge. Their
limits define the lim sup and lim inf of the original sequence.

Definition 2. Let (xn) be a bounded squence. Then

lim sup
n→∞

xn = lim
n→∞

[sup {xk : k ≥ n}] , lim inf
n→∞

xn = lim
n→∞

[inf {xk : k ≥ n}] .

That is,
lim supxn = lim yn, lim inf xn = lim zn.

It follows from (1) and the order properties of limits that

lim inf
n→∞

xn ≤ lim sup
n→∞

xn. (2)
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Theorem 3. A sequence (xn) converges to x ∈ R if and only if

lim sup
n→∞

xn = lim inf
n→∞

xn = x.

Proof. Suppose that the lim sup and lim inf of (xn) are both equal to x ∈ R.
Then yn → x and zn → x. The definition of yn and zn implies that zn ≤ xn ≤ yn
for every n ∈ N, so the “squeeze” theorem implies that xn → x.

Conversely, suppose that xn → x. Given any ε > 0, there exists N ∈ N such
that

x− ε < xn < x+ ε for every n > N.

It follows that

x− ε ≤ inf {xk : k ≥ n} ≤ sup {xk : k ≥ n} ≤ x+ ε for every n > N,

which shows that

|yn − x| ≤ ε, |zn − x| ≤ ε for every n > N.

Hence, yn → x and zn → x, so lim supxn = lim inf xn = x.

2 Cauchy sequences

A Cauchy sequence is a sequence whose terms eventually get arbitrarily close
together.

Definition 4. A sequence (xn) of real numbers is a Cauchy sequence if for
every ε > 0 there exists N ∈ N such that

|xm − xn| < ε for all m,n > N.

Every convergent sequence is Cauchy, and the completeness of R implies
that every Cauchy sequence converges.

Theorem 5. A sequence of real numbers converges if and only if it is a Cauchy
sequence.

Proof. First suppose that (xn) converges to a limit x ∈ R. Then for every ε > 0
there exists N ∈ N such that

|xn − x| <
ε

2
for all n > N.

It follows that if m,n > N , then

|xm − xn| ≤ |xm − x|+ |x− xn| < ε,

which implies that (xn) is Cauchy. (This direction doesn’t use the completeness
of R; for example, it holds equally well for sequence of rational numbers that
converge in Q.)
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Conversely, suppose that (xn) is Cauchy. Then there is N1 ∈ N such that

|xm − xn| < 1 for all m,n > N1.

It follows that if n > N1, then

|xn| ≤ |xn − xN1+1|+ |xN1+1| ≤ 1 + |xN1+1|.

Hence the sequence is bounded with

|xn| ≤ max {|x1|, |x2|, . . . , |xN1 |, 1 + |xN1+1|} .

Since the sequence is bounded, its lim sup and lim inf exist. We claim they
are equal. Given ε > 0, choose N ∈ N such that the Cauchy condition in
Definition 4 holds. Then

xn − ε < xm < xn + ε for all m ≥ n > N.

It follows that for all n > N we have

xn − ε ≤ inf {xm : m ≥ n} , sup {xm : m ≥ n} ≤ xn + ε,

which implies that

sup {xm : m ≥ n} − ε ≤ inf {xm : m ≥ n}+ ε.

Taking the limit as n→∞, we get that

lim sup
n→∞

xn − ε ≤ lim inf
n→∞

xn + ε,

and since ε > 0 is arbitrary, we have

lim sup
n→∞

xn ≤ lim inf
n→∞

xn.

In view of (2), it follows that lim supxn = lim inf xn, so the sequence converges
by Theorem 3.
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