The lim inf and lim sup and Cauchy sequences

1 The limsup and lim inf

We begin by stating explicitly some immediate properties of the sup and inf,
which we use below.

Proposition 1. (a) If A C R is a nonempty set, then inf A < sup A. (b) If
A C B, then sup A < sup B and inf A > inf B.

Proof. (a) If z € A, then inf A < 2 < sup A, so the result follows. (b) If A C B,
then sup B is an upper bound of A, so sup A < sup B. Similarly, inf B is a lower
bound of A, so inf A > inf B. O

Suppose that (z,,) is a bounded sequence, meaning that there exist m, M € R
such that
m<xz, <M for all n € N.

Let T,, C R be the set of terms of the tail of the sequence starting at x,,
T, ={zr: k>n}.
Then T, is bounded from above by M and bounded from below m, so
Yn = sup Ty, zp = inf T,

exist, and
m<z, <y, <M. (1)

Moreover, Tp,4+1 C Ty, 80 Ynt1 < Yn and zp41 > 2. It follows that (y,) is a
decreasing sequence that is bounded from below by m, and (z,,) is an increasing
sequence that is bounded from above by M, so both sequences converge. Their
limits define the limsup and liminf of the original sequence.

Definition 2. Let (x,) be a bounded squence. Then

limsupa, = lim [sup{zy : k >n}], liminf 2, = lim [inf {z} : k > n}].
n—00 n— 00 n—00 n—o00
That is,
limsup x,, = limy,, lim inf z,, = lim z,,.

Tt follows from (1) and the order properties of limits that

liminf x,, < limsup z,,. (2)
n—00 n—00



Theorem 3. A sequence (z,,) converges to x € R if and only if

limsup z,, = liminf z,, = x.
n—soo n—00

Proof. Suppose that the limsup and liminf of (z,) are both equal to z € R.
Then y,, — = and z, — x. The definition of y,, and z, implies that z,, < x,, < y,
for every n € N, so the “squeeze” theorem implies that z,, — .
Conversely, suppose that z,, — x. Given any € > 0, there exists NV € N such
that
r—e< T, <xT+E for every n > N.

It follows that
r—e<inf{xg:k>n} <sup{zrp:k>n}<z+e for every n > N,
which shows that
lyn — x| <€, |zn—z| <€ for every n > N.

Hence, y,, — = and z, — x, so limsup x,, = liminf z,, = x. O

2 Cauchy sequences

A Cauchy sequence is a sequence whose terms eventually get arbitrarily close
together.

Definition 4. A sequence (z,) of real numbers is a Cauchy sequence if for
every € > 0 there exists NV € N such that

[T — x| < € for all m,n > N.

Every convergent sequence is Cauchy, and the completeness of R implies
that every Cauchy sequence converges.

Theorem 5. A sequence of real numbers converges if and only if it is a Cauchy
sequence.

Proof. First suppose that (z,,) converges to a limit € R. Then for every ¢ > 0
there exists N € N such that

|xn—x|<g for all n > N.
It follows that if m,n > N, then
| — | < |z — 2| + |2 — 2| <

which implies that (z,,) is Cauchy. (This direction doesn’t use the completeness
of R; for example, it holds equally well for sequence of rational numbers that
converge in Q.)



Conversely, suppose that (x,) is Cauchy. Then there is N; € N such that
[T — xn| < 1 for all m,n > Njy.
It follows that if n > Ny, then
|n| < Jzn — Tnr] 2N ] S 1+ 284l
Hence the sequence is bounded with
|zn| < max {|x1], |z2,. .- e, |, 1+ 2Ny +1] ) -

Since the sequence is bounded, its limsup and liminf exist. We claim they
are equal. Given ¢ > 0, choose N € N such that the Cauchy condition in
Definition 4 holds. Then

Ty — €< Ty < Ty + € forallm>n> N.
It follows that for all n > N we have
xp —e <inf{z,, :m>n}, sup{z,:m>n}<z,+e¢,
which implies that
sup{xm, :m >n} —e<inf{x,, :m >n}+e
Taking the limit as n — oo, we get that

limsup z, — € < liminf z, + ¢,
n—00 n—oo

and since € > 0 is arbitrary, we have

limsup x,, < liminf z,,.
n—oo n—0o0

In view of (2), it follows that lim sup z,, = liminf z,,, so the sequence converges
by Theorem 3. O



