Real Analysis
Math 127A-A, Winter 2019

Midterm 1: Solutions

1. [15pts] What are the axioms that define the real numbers \mathbb{R} ? You should explain briefly what the axioms say, but you do not have to write them out in detail.

Solution

- The real numbers \mathbb{R} are a Dedekind-complete ordered field.
- "Field" means that \mathbb{R} is equipped with addition and multiplication operations $(+, \cdot)$ with identity elements $0,1 \in \mathbb{R}$ that satisfy the usual properties: $(\mathbb{R},+, 0)$ and $\left(\mathbb{R}^{*}, \cdot, 1\right)$ are commutative groups, where $\mathbb{R}^{*}=$ $\mathbb{R} \backslash\{0\} ;$ and multiplication is distributive over addition.
- "Ordered" means that \mathbb{R} is linearly ordered by an order relation $<$ that is compatible with its algebraic operations.
- "Dedekind-complete" means that every nonempty subset of \mathbb{R} that is bounded from above has a supremum.

2. [20pts] Say if the following statements are true or false. If true, give a brief explanation (a complete proof is not required); if false, give a counterexample.
(a) If $A \subset \mathbb{R}$ is nonempty and bounded from above, then $\sup A \in A$.
(b) If $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are sequences such that $x_{n} \rightarrow 0$ as $n \rightarrow \infty$ and $\left(y_{n}\right)$ is bounded, then $x_{n} y_{n} \rightarrow 0$ as $n \rightarrow \infty$.
(c) If an increasing sequence $\left(x_{n}\right)$ contains a convergent subsequence $\left(x_{n_{k}}\right)$, then $\left(x_{n}\right)$ converges.
(d) If $x_{n}=\sin n$, then the sequence $\left(x_{n}\right)$ has a convergent subsequence.

Solution

- (a) False. For example, $\sup (0,1)=1 \notin(0,1)$.
- (b) True. If $\left|y_{n}\right| \leq M$, then $0 \leq\left|x_{n} y_{n}\right| \leq M\left|x_{n}\right|$, and $x_{n} y_{n} \rightarrow 0$ by the squeeze theorem.
- (c) True. Let $s=\sup \left\{x_{n_{k}}: k \in \mathbb{N}\right\}$. If $n \in \mathbb{N}$, then there exists $k \in \mathbb{N}$ such that $n \leq n_{k}$. Since the sequence is increasing, we have $x_{n} \leq x_{n_{k}} \leq s$, so the sequence $\left(x_{n}\right)$ is bounded from above by s, and it converges by the monotone convergence theorem (to the same limit as its subsequences).
- (d) True. We have $|\sin n| \leq 1$ for every $n \in \mathbb{N}$, so the sequence is bounded, and it has a convergent subsequence by the Bolzano-Weierstrass theorem.

3. (a) State what it means for the rational numbers to be dense in the real numbers.
(b) Prove that every real number is the limit of a sequence of rational numbers.

Solution

- (a) For every $x, y \in \mathbb{R}$ with $x<y$, there exists $r \in \mathbb{Q}$ such that $x<r<y$.
- (b) Let $x \in \mathbb{R}$. By the density of \mathbb{Q} in \mathbb{R}, for every $n \in \mathbb{N}$, there exists $r_{n} \in \mathbb{Q}$ such that

$$
x-\frac{1}{n}<r_{n}<x+\frac{1}{n} .
$$

Since $x-1 / n \rightarrow x$ and $x+1 / n \rightarrow x$ as $n \rightarrow \infty$, the squeeze theorem implies that $r_{n} \rightarrow x$ as $n \rightarrow \infty$.
4. [20pts] (a) State the definition of a Cauchy sequence $\left(x_{n}\right)$ of real numbers.
(b) Suppose that a sequence $\left(x_{n}\right)$ satisfies

$$
\begin{equation*}
\left|x_{n+1}-x_{n}\right|<\frac{1}{2^{n}} \quad \text { for every } n \in \mathbb{N} \tag{1}
\end{equation*}
$$

Prove that $\left(x_{n}\right)$ is a Cauchy sequence. Hint. Recall that

$$
\begin{equation*}
\sum_{k=0}^{N} \frac{1}{2^{k}}=\frac{1-(1 / 2)^{N+1}}{1-(1 / 2)}<2 \tag{2}
\end{equation*}
$$

Solution

- (a) A sequence $\left(x_{n}\right)$ is a Cauchy sequence if for every $\epsilon>0$ there exists $N \in \mathbb{N}$ such that $\left|x_{m}-x_{n}\right|<\epsilon$ for all $m, n>N$.
- (b) Let $m, n \in \mathbb{N}$ with $m>n$. Then

$$
\begin{aligned}
x_{m}-x_{n} & =x_{m}-x_{m-1}+x_{m-1}-x_{m-2}+\cdots+x_{n+1}-x_{n} \\
& =\sum_{k=n}^{m-1}\left(x_{k+1}-x_{k}\right)
\end{aligned}
$$

Using the triangle inequality and (1)-(2), we get that

$$
\begin{aligned}
\left|x_{m}-x_{n}\right| & \leq \sum_{k=n}^{m-1}\left|x_{k+1}-x_{k}\right| \\
& \leq \sum_{k=n}^{m-1} \frac{1}{2^{k}} \\
& \leq \frac{1}{2^{n}} \sum_{j=0}^{m-n-1} \frac{1}{2^{j}} \\
& <\frac{1}{2^{n-1}} .
\end{aligned}
$$

- Let $\epsilon>0$. Since $1 / 2^{n-1} \rightarrow 0$ as $n \rightarrow \infty$, there exists $N \in \mathbb{N}$ such that $1 / 2^{N-1}<\epsilon$. Then for every $m>n>N$, we have

$$
\left|x_{m}-x_{n}\right|<\frac{1}{2^{n-1}}<\frac{1}{2^{N-1}}<\epsilon
$$

which proves that $\left(x_{n}\right)$ is Cauchy.

