REAL ANALYSIS Math 127A-A, Winter 2019 Midterm 2: Solutions

- **1.** [15pts] Let $A \subset \mathbb{R}$.
- (a) Define what it means for $x \in \mathbb{R}$ to be an isolated point of A.
- (b) Define what it means for $x \in \mathbb{R}$ to be a limit point of A.
- (c) Define the closure \overline{A} of A.

Solution

- (a) A real number $x \in \mathbb{R}$ is an isolated point of A if $x \in A$ and there exists $\epsilon > 0$ such that x is the only point of A in the interval $(x-\epsilon, x+\epsilon)$.
- (b) A real number $x \in \mathbb{R}$ is a limit point of $A \subset \mathbb{R}$ if for every $\epsilon > 0$ there exists $a \in A$ with $a \neq x$ such that $a \in (x - \epsilon, x + \epsilon)$. Equivalently, $x \in \mathbb{R}$ is a limit point of $A \subset \mathbb{R}$ if there is a sequence (a_n) of points $a_n \in A$ with $a_n \neq x$ such that $a_n \to x$ as $n \to \infty$.
- (c) The following are equivalent definitions: (i) $\overline{A} = A \cup L$ where L is the set of limit points of A; (ii) \overline{A} is the set of limits of all convergent sequences in A; (iii) \overline{A} is the intersection of all closed sets that contain A.

2. [20pts] Say if the following statements are true or false. If true, give a brief explanation (a complete proof is not required); if false, give a counterexample.

- (a) If $\lim_{n\to\infty} a_n = 0$, then $\sum_{n=1}^{\infty} a_n$ converges.
- (b) The series

$$\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{2^n + n^2}{n^2 2^n + 1} \right)$$

converges absolutely.

- (c) A finite subset of \mathbb{R} is closed.
- (d) If $G_n \subset \mathbb{R}$ is open for every $n \in \mathbb{N}$, then $\bigcap_{n=1}^{\infty} G_n$ is open.

Solution

- (a) False. For example, the harmonic series $\sum 1/n$ diverges but $1/n \rightarrow 0$ as $n \rightarrow \infty$.
- (b) True. We have

$$\left| (-1)^{n+1} \left(\frac{2^n + n^2}{n^2 2^n + 1} \right) \right| \le \frac{1}{n^2} + \frac{1}{2^n},$$

and

$$\sum_{n=1}^{\infty} \left(\frac{1}{n^2} + \frac{1}{2^n} \right) = \sum_{n=1}^{\infty} \frac{1}{n^2} + \sum_{n=1}^{\infty} \frac{1}{2^n}$$

converges, so the series converges absolutely by the comparison test.

- (c) True. A singleton set $\{x\}$ is closed and the finite union of closed sets is closed.
- (d) False. For example, $G_n = (-\infty, 1/n)$ is open, but

$$\bigcap_{n=1}^{\infty} G_n = (-\infty, 0]$$

is not.

3. [20pts] Let (a_n) be a sequence, where $n \in \mathbb{N}$, and define a sequence (b_n) by $b_n = a_{2n-1} + a_{2n}$.

(a) If the series $\sum_{n=1}^{\infty} a_n$ converges, prove that the series

$$\sum_{n=1}^{\infty} b_n = (a_1 + a_2) + (a_3 + a_4) + (a_5 + a_6) + \dots$$

converges to the same sum.

(b) Does the convergence of $\sum_{n=1}^{\infty} b_n$ imply the convergence of $\sum_{n=1}^{\infty} a_n$?

Solution

• (a) Let $S_n = \sum_{k=1}^n a_k$ denote the *n*th partial sum of $\sum a_k$. Then

$$S_n \to S = \sum_{k=1}^{\infty} a_k \quad \text{as } n \to \infty.$$

• Let $T_m = \sum_{k=1}^m b_k$ denote the *m*th partial sum of $\sum b_k$. Then $T_m = S_{2m}$, meaning that (T_m) is a subsequence of the convergent sequence (S_n) , so (T_m) converges to the same limit S, and

$$\sum_{k=1}^{\infty} b_k = \lim_{m \to \infty} T_m = \sum_{k=1}^{\infty} a_k.$$

• (b) The convergence of $\sum b_n$ doesn't imply the convergence of $\sum a_n$. For example, if $a_n = (-1)^{n+1}$, then $b_n = 0$ for every $n \in \mathbb{N}$, and $\sum b_n$ converges, but the partial sums of $\sum a_n$ oscillate between 1 and 0, so the series diverges. **4.** [20pts] (a) Define what it means for $A \subset \mathbb{R}$ to be an open set.

(b) Define the sum of sets $A, B \subset \mathbb{R}$ to be the set

$$A + B = \{a + b : a \in A, b \in B\}.$$

If A is open, prove that A + B is open.

Solution

- (a) A set $A \subset \mathbb{R}$ is open if for every $x \in A$ there exists $\epsilon > 0$ such that $(x \epsilon, x + \epsilon) \subset A$.
- (b) Let x ∈ A + B, so x = a + b for some a ∈ A and b ∈ B. Since A is open, there exists ε > 0 such that (a − ε, a + ε) ⊂ A. It follows that (a − ε + b, a + ε + b) ⊂ A + B, or (x − ε, x + ε) ⊂ A + B, which proves that A + B is open.