Real Analysis

Math 127A-A, Winter 2019

Midterm 2: Solutions

1. $[15 \mathrm{pts}]$ Let $A \subset \mathbb{R}$.
(a) Define what it means for $x \in \mathbb{R}$ to be an isolated point of A.
(b) Define what it means for $x \in \mathbb{R}$ to be a limit point of A.
(c) Define the closure \bar{A} of A.

Solution

- (a) A real number $x \in \mathbb{R}$ is an isolated point of A if $x \in A$ and there exists $\epsilon>0$ such that x is the only point of A in the interval $(x-\epsilon, x+\epsilon)$.
- (b) A real number $x \in \mathbb{R}$ is a limit point of $A \subset \mathbb{R}$ if for every $\epsilon>0$ there exists $a \in A$ with $a \neq x$ such that $a \in(x-\epsilon, x+\epsilon)$. Equivalently, $x \in \mathbb{R}$ is a limit point of $A \subset \mathbb{R}$ if there is a sequence $\left(a_{n}\right)$ of points $a_{n} \in A$ with $a_{n} \neq x$ such that $a_{n} \rightarrow x$ as $n \rightarrow \infty$.
- (c) The following are equivalent definitions: (i) $\bar{A}=A \cup L$ where L is the set of limit points of A; (ii) \bar{A} is the set of limits of all convergent sequences in A; (iii) \bar{A} is the intersection of all closed sets that contain A.

2. [20pts] Say if the following statements are true or false. If true, give a brief explanation (a complete proof is not required); if false, give a counterexample.
(a) If $\lim _{n \rightarrow \infty} a_{n}=0$, then $\sum_{n=1}^{\infty} a_{n}$ converges.
(b) The series

$$
\sum_{n=1}^{\infty}(-1)^{n+1}\left(\frac{2^{n}+n^{2}}{n^{2} 2^{n}+1}\right)
$$

converges absolutely.
(c) A finite subset of \mathbb{R} is closed.
(d) If $G_{n} \subset \mathbb{R}$ is open for every $n \in \mathbb{N}$, then $\bigcap_{n=1}^{\infty} G_{n}$ is open.

Solution

- (a) False. For example, the harmonic series $\sum 1 / n$ diverges but $1 / n \rightarrow$ 0 as $n \rightarrow \infty$.
- (b) True. We have

$$
\left|(-1)^{n+1}\left(\frac{2^{n}+n^{2}}{n^{2} 2^{n}+1}\right)\right| \leq \frac{1}{n^{2}}+\frac{1}{2^{n}},
$$

and

$$
\sum_{n=1}^{\infty}\left(\frac{1}{n^{2}}+\frac{1}{2^{n}}\right)=\sum_{n=1}^{\infty} \frac{1}{n^{2}}+\sum_{n=1}^{\infty} \frac{1}{2^{n}}
$$

converges, so the series converges absolutely by the comparison test.

- (c) True. A singleton set $\{x\}$ is closed and the finite union of closed sets is closed.
- (d) False. For example, $G_{n}=(-\infty, 1 / n)$ is open, but

$$
\bigcap_{n=1}^{\infty} G_{n}=(-\infty, 0]
$$

is not.
3. [20pts] Let $\left(a_{n}\right)$ be a sequence, where $n \in \mathbb{N}$, and define a sequence $\left(b_{n}\right)$ by $b_{n}=a_{2 n-1}+a_{2 n}$.
(a) If the series $\sum_{n=1}^{\infty} a_{n}$ converges, prove that the series

$$
\sum_{n=1}^{\infty} b_{n}=\left(a_{1}+a_{2}\right)+\left(a_{3}+a_{4}\right)+\left(a_{5}+a_{6}\right)+\ldots
$$

converges to the same sum.
(b) Does the convergence of $\sum_{n=1}^{\infty} b_{n}$ imply the convergence of $\sum_{n=1}^{\infty} a_{n}$?

Solution

- (a) Let $S_{n}=\sum_{k=1}^{n} a_{k}$ denote the nth partial sum of $\sum a_{k}$. Then

$$
S_{n} \rightarrow S=\sum_{k=1}^{\infty} a_{k} \quad \text { as } n \rightarrow \infty
$$

- Let $T_{m}=\sum_{k=1}^{m} b_{k}$ denote the m th partial sum of $\sum b_{k}$. Then $T_{m}=$ $S_{2 m}$, meaning that (T_{m}) is a subsequence of the convergent sequence $\left(S_{n}\right)$, so $\left(T_{m}\right)$ converges to the same limit S, and

$$
\sum_{k=1}^{\infty} b_{k}=\lim _{m \rightarrow \infty} T_{m}=\sum_{k=1}^{\infty} a_{k}
$$

- (b) The convergence of $\sum b_{n}$ doesn't imply the convergence of $\sum a_{n}$. For example, if $a_{n}=(-1)^{n+1}$, then $b_{n}=0$ for every $n \in \mathbb{N}$, and $\sum b_{n}$ converges, but the partial sums of $\sum a_{n}$ oscillate between 1 and 0 , so the series diverges.

4. [20pts] (a) Define what it means for $A \subset \mathbb{R}$ to be an open set.
(b) Define the sum of sets $A, B \subset \mathbb{R}$ to be the set

$$
A+B=\{a+b: a \in A, b \in B\}
$$

If A is open, prove that $A+B$ is open.

Solution

- (a) A set $A \subset \mathbb{R}$ is open if for every $x \in A$ there exists $\epsilon>0$ such that $(x-\epsilon, x+\epsilon) \subset A$.
- (b) Let $x \in A+B$, so $x=a+b$ for some $a \in A$ and $b \in B$. Since A is open, there exists $\epsilon>0$ such that $(a-\epsilon, a+\epsilon) \subset A$. It follows that $(a-\epsilon+b, a+\epsilon+b) \subset A+B$, or $(x-\epsilon, x+\epsilon) \subset A+B$, which proves that $A+B$ is open.

