Real Analysis
 Math 127A-B, Winter 2019
 Midterm 1: Solutions

1. [15pts] State three different properties that characterize the completeness of the real numbers \mathbb{R}.

Solution.

Any three from the following.

- Every nonempty set bounded from above has a supremum (Dedekind complete).
- Every bounded, increasing (or monotone) sequence converges (monotone convergence).
- Every Cauchy sequence converges (Cauchy complete).
- Every nested sequence of nonempty, closed, bounded intervals has nonempty intersection (nested interval property).
- Every bounded sequence has a convergent subsequence (Bolzano-Weierstrass).

Note that \mathbb{R} satisfies all of these properties but \mathbb{Q} does not satisfy any of them.
2. [20pts] Say if the following statements are true or false. If true, give a brief explanation (a complete proof is not required); if false, give a counterexample.
(a) If $a, b \in \mathbb{R}$ and $a<b+1 / n$ for every $n \in \mathbb{N}$, then $a \leq b$.
(b) Every bounded monotonic sequence is a Cauchy sequence.
(c) If the sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ diverge, then the sequence $\left(x_{n} y_{n}\right)$ diverges.
(d) If a sequence $\left(x_{n}\right)$ contains a subsequence $\left(x_{n_{k}}\right)$ such that $x_{n_{k}} \rightarrow \infty$ as $k \rightarrow \infty$, then $x_{n} \rightarrow \infty$ as $n \rightarrow \infty$.

Solution

- (a) True. Take the limit of $a<b+1 / n$ as $n \rightarrow \infty$ and use the order properties of limits.
- (b) True. Every bounded monotone sequence converges (by the monotone convergence theorem) and every convergent sequence is Cauchy.
- (c) False. For example, if $x_{n}=y_{n}=(-1)^{n+1}$, then $\left(x_{n}\right)$ and $\left(y_{n}\right)$ diverge but $\left(x_{n} y_{n}\right)$ converges to 1 .
- (d) False. For example, if $x_{n}=(-1)^{n+1} n$ and $n_{k}=2 k-1$, then $x_{n_{k}}=2 k-1 \rightarrow \infty$, but $\left(x_{n}\right)$ does not diverge to ∞ because there are infinitely many terms such that $x_{n}<0$.

3. [20pts] (a) State the definition of the convergence of a sequence $\left(x_{n}\right)$ of real numbers to a limit x.
(b) Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be sequences of real numbers, and let $\left(z_{n}\right)$ be the "shuffled" sequence $\left(x_{1}, y_{1}, x_{2}, y_{2}, \ldots\right)$ defined by $z_{2 k-1}=x_{k}, z_{2 k}=y_{k}$. Prove that $\left(z_{n}\right)$ converges to $x \in \mathbb{R}$ if and only if both $\left(x_{n}\right)$ and $\left(y_{n}\right)$ converge to x.

Solution

- (a) A sequence $\left(x_{n}\right)$ converges to $x \in \mathbb{R}$ if for every $\epsilon>0$, there exists $N \in \mathbb{N}$ such that $\left|x_{n}-x\right|<\epsilon$ for every $n>N$.
- (b) First, suppose that $\left(x_{k}\right)$ and $\left(y_{k}\right)$ both converge to $x \in \mathbb{R}$. Then given any $\epsilon>0$, there exists $N_{1}, N_{2} \in \mathbb{N}$ such that $\left|x_{k}-x\right|<\epsilon$ for all $k>N_{1}$, and $\left|y_{k}-x\right|<\epsilon$ for all $k>N_{2}$. Choose $N=2 \max \left\{N_{1}, N_{2}\right\}$. We claim that $n>N$ implies $\left|z_{n}-x\right|<\epsilon$, which proves that $z_{n} \rightarrow x$ as $n \rightarrow \infty$.
- To prove the claim, note that if $n=2 k-1>N$ is odd, then $k>$ $(N+1) / 2>N_{1}$, so $\left|z_{n}-x\right|=\left|x_{k}-x\right|<\epsilon$, and if $n=2 k>N$ is even, then $k>N_{2}$, so $\left|z_{n}-x\right|=\left|y_{k}-x\right|<\epsilon$.
- (b) Conversely, suppose that $\left(z_{n}\right)$ converges to $x \in \mathbb{R}$. Then $\left(x_{k}\right)$ and $\left(y_{k}\right)$, both converge to x, since they are subsequences of $\left(z_{n}\right)$ and every subsequence of a convergent sequence converges to the limit of the sequence. (Or you can give an $\epsilon-N$ proof.)

4. [20pts] (a) Let $\left(x_{n}\right)$ be a bounded sequence of real numbers. Define $\lim \sup _{n \rightarrow \infty} x_{n}$.
(b) Suppose that $\left(x_{n_{k}}\right)$ is a convergent subsequence of a bounded sequence $\left(x_{n}\right)$ of real numbers. Prove that

$$
\lim _{k \rightarrow \infty} x_{n_{k}} \leq \limsup _{n \rightarrow \infty} x_{n}
$$

Solution

- (a) If $\left(x_{n}\right)$ is a bounded sequence, then

$$
\limsup _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n} \quad y_{n}=\sup \left\{x_{k}: k \geq n\right\}
$$

The supremum exists since the set $\left\{x_{k}: k \geq n\right\}$ is nonempty and bounded, while the limit exists since the sequence $\left(y_{n}\right)$ is decreasing and bounded.

- (b) Let $\left(x_{n_{k}}\right)$ be a convergent subsequence of a bounded sequence $\left(x_{n}\right)$, with $x_{n_{k}} \rightarrow x$ as $k \rightarrow \infty$. For every $k \in \mathbb{N}$, we have

$$
\begin{equation*}
x_{n_{k}} \leq y_{n_{k}} \tag{1}
\end{equation*}
$$

Then $\left(y_{n_{k}}\right)$ is a subsequence of the convergent sequence $\left(y_{n}\right)$, so

$$
y_{n_{k}} \rightarrow y=\limsup _{n \rightarrow \infty} x_{n} \quad \text { as } k \rightarrow \infty
$$

Taking the limit of (1) as $k \rightarrow \infty$ and using the order properties of limits, we get that $x \leq y$, which proves the result.

