Real Analysis
 Math 127A-B, Winter 2019 Midterm 2

1. [15pts] (a) Give the definition of an open set $G \subset \mathbb{R}$.
(b) Give two definitions of a closed set $F \subset \mathbb{R}$, one in terms of open sets, the other in terms of sequences.

Solution

- (a) A set $G \subset \mathbb{R}$ is open if for every $x \in G$ there exists $\epsilon>0$ such that $(x-\epsilon, x+\epsilon) \subset G$.
- (b) (i) A set $F \subset \mathbb{R}$ is closed if $F^{c}=\mathbb{R} \backslash F$ is open. (ii) A set $F \subset \mathbb{R}$ is closed if the limit of every convergent sequence in F belongs to F.

2. [20pts] Say if the following statements are true or false. If true, give a brief explanation (a complete proof is not required); if false, give a counterexample.
(a) The series

$$
\sum_{n=1}^{\infty}\left[\frac{1}{n^{2}}+\frac{(-1)^{n+1}}{n}\right]
$$

converges conditionally.
(b) If $\sum a_{n}$ converges absolutely, then $\sum a_{n}^{2}$ converges.
(c) If $A \subset \mathbb{R}$ is not closed, then A is open.
(d) If every $a \in A$ is a limit point of $A \subset \mathbb{R}$, then A is closed.

Solution

- (a) True. The series converges since

$$
\sum_{n=1}^{\infty}\left[\frac{1}{n^{2}}+\frac{(-1)^{n+1}}{n}\right]=\sum_{n=1}^{\infty} \frac{1}{n^{2}}+\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}
$$

is the sum of two convergent series. The series does not converge absolutely by the comparison test, since

$$
\left|\frac{1}{n^{2}}+\frac{(-1)^{n+1}}{n}\right| \geq \frac{1}{2 n} \quad \text { for } n \in \mathbb{N}
$$

and the harmonic series diverges.

- (b) True. Since $\sum a_{n}$ converges, we have $a_{n} \rightarrow 0$ as $n \rightarrow \infty$, so there exists $N \in \mathbb{N}$ such that $\left|a_{n}\right| \leq 1$ and $0 \leq a_{n}^{2} \leq\left|a_{n}\right|$ for all $n>N$. Then comparison with the convergent series $\sum\left|a_{n}\right|$ implies that $\sum a_{n}^{2}$ converges absolutely.
- (c) False. For example $A=(0,1]$ is not open, since no neighborhood of $1 \in A$ is contained in A, and not closed since the sequence $(1 / n)$ in A converges to 0 and $0 \notin A$.
- (d) False. For example, every $r \in \mathbb{Q}$ is a limit point of \mathbb{Q}, since every neighborhood of r contains rational numbers distinct from r, but \mathbb{Q} is not closed since there is a convergent sequence of rational numbers with an irrational limit that does not belong to \mathbb{Q}. (What is true is that a set A is closed if every limit point $x \in \mathbb{R}$ belongs to A.)

3. [20pts] (a) Define what it means for a series $\sum_{k=1}^{\infty} a_{k}$ to converge.
(b) Suppose that $\sum_{k=1}^{\infty} a_{k}$ is a convergent series. Prove that $\sum_{k=n+1}^{\infty} a_{k}$ converges for every $n \in \mathbb{N}$, and show that for every $\epsilon>0$ there exists $N \in \mathbb{N}$ such that

$$
\left|\sum_{k=n+1}^{\infty} a_{k}\right|<\epsilon \quad \text { for all } n>N
$$

Solution

- (a) A series $\sum_{k=1}^{\infty} a_{k}$ converges to $S \in \mathbb{R}$ if $S_{n} \rightarrow S$ as $n \rightarrow \infty$, where $S_{n}=\sum_{k=1}^{n} a_{k}$ is the nth partial sum of the series. That is, for every $\epsilon>0$ there exists $N \in \mathbb{N}$ such that

$$
\left|\sum_{k=1}^{n} a_{k}-S\right|<\epsilon \quad \text { for all } n>N
$$

- (b) Let $S_{m}=\sum_{k=1}^{m} a_{k}$, so that $S_{m} \rightarrow S=\sum_{k=1}^{\infty} a_{k}$ as $m \rightarrow \infty$. Then

$$
\sum_{k=n+1}^{m} a_{k}=S_{m}-S_{n} \quad \text { for } m>n
$$

Taking the limit of this equation as $m \rightarrow \infty$ with n fixed, we get that

$$
\sum_{k=n+1}^{\infty} a_{k}=\lim _{m \rightarrow \infty}\left(S_{m}-S_{n}\right)=S-S_{n}
$$

so the series converges.

- In addition, since $S_{n} \rightarrow S$ as $n \rightarrow \infty$, for every $\epsilon>0$ there exists $N \in \mathbb{N}$ such that $\left|S-S_{n}\right|<\epsilon$ for all $n>N$, meaning that

$$
\left|\sum_{k=n+1}^{\infty} a_{k}\right|<\epsilon \quad \text { for all } n>N
$$

4. [20pts] (a) Define what it means for $x \in \mathbb{R}$ to be a limit point of $A \subset \mathbb{R}$.
(b) Suppose that $A \subset \mathbb{R}$ is nonempty, bounded from above, and $\sup A \notin A$. Prove that $\sup A$ is a limit point of A.

Solution

- (a) A real number $x \in \mathbb{R}$ is a limit point of $A \subset \mathbb{R}$ if for every $\epsilon>0$ there exists $a \in A$ with $a \neq x$ such that $a \in(x-\epsilon, x+\epsilon)$. Equivalently, $x \in \mathbb{R}$ is a limit point of $A \subset \mathbb{R}$ if there is a sequence $\left(a_{n}\right)$ of points $a_{n} \in A$ with $a_{n} \neq x$ such that $a_{n} \rightarrow x$ as $n \rightarrow \infty$.
- (b) Let $\epsilon>0$. Since $\sup A$ is the least upper bound of A, there exists $a \in A$ such that $\sup A-\epsilon<a \leq \sup A$, and $a \neq \sup A \operatorname{since} \sup A \notin A$. It follows that for every $\epsilon>0$, there exists $a \in A$ with $a \neq \sup A$ such that $a \in(\sup A-\epsilon, \sup A+\epsilon)$, meaning that $\sup A$ is a limit point of A.

