ADVANCED CALCULUS
Math 127B, Winter 2005
Solutions: Final

1. Define f,, g, : [0,1] — R by
nx? () n’x
= (7)) = ————.
1+ n222’ g 1+ n2z2

fn()

Show that the sequences (f,,), (g,) converge pointwise on [0, 1], and determine
their pointwise limits. Determine (with proof) whether or not each sequence
converges uniformly on [0, 1].

Solution.

e Asn — oo, we have f,, — 0 and g, — g pointwise, where

1)z 0<z<1,
g(w)_{o if 2 = 0.

e Given € > 0, choose N = 1/e. Then n > N implies that

1 2 1
| ful)] = (L)g—« for all z € [0, 1].

n \1/n + na? n
Therefore f, converges uniformly to 0.

e The functions g, are continuous, and their pointwise limit ¢ is discon-
tinuous. Since the uniform limit of continuous functions is continuous,
(gn) does not converge uniformly.



2. Find all points x € R where the following power series converges:

1
14+ n2»

z".

NE

3
Il
o

Solution.

e According to the ratio test, the radius of convergence R of the power
series Y a,a™ is given by
Qn,

R = lim

n—oo

Qp+1

(provided that this limit exists). Hence the radius of convergence of
the given power series is

n+1
R — liml+(n+1)2
n—00 1+ n2n
~ lm 1/(n2") + (1+1/n)2
nee 1/(n27) 1 1
= 2

e When x = 2, the series is

= 2" 1
Z1+n2n_Z +2-n'

n=0 n=0

3

Since
1

>
n+2""n+1
this series diverges by comparison with the divergent harmonic series

= 1
Zn—i—l'

—_

n=0
e When x = —2, the series is
SO U2 S
= 14 n2n —n+ 2-n



which converges by the alternating series test, since

1

— =0 as n — 0o
n+2"

and is decreasing in n.

e The power series therefore converges for —2 < x < 2.



3. (a) Prove that the following series converge on R to continuous functions:

> cos nx
fla)=2 ——,
n=1

o(z) = Z sinm:‘

3
n
n=1

(b) Prove that g is differentiable on R, and ¢’ = f.

Solution.
e (a) Since
cosnx 1
‘ n? ‘ = n2’
for all z € R and

=1
> <%0
n=1

sin nx 1
nd | nd

o

S o<
— < 0
n3

n=1

the Weierstrass M-test implies that both series converge uniformly on
R. Since the terms in the series are continuous, and the uniform limit
of continuous functions is continuous, the sums f, g are continuous.

e (b) Since the uniform convergence of Riemann integrable functions im-
plies convergence of their Riemann integrals, we can integrate the series
for f term-by-term over the interval [0, z] (or [z,0] if x < 0) to obtain

/Ozf(ﬂdt -

o
* cosnt
E 5 dt
n=1 0 n
o0 .
Z S1n nNx
n3

n=1

g(z).

Since f is continuous, the fundamental theorem of calculus implies that

g is differentiable and ¢’ = f.



4. Let a > 0. Give a definition of the following improper Riemann integral
as a limit of Riemann integrals:

& 1
/ L,
, 2(log )"

For what values of a does this integral converge?

Solution.
e We define
o) 1 . b 1
——dx = lim ——dx.
5 x(logx)® b—oo Jo x(logx)®
o Let

|
[@:lagﬂﬂm

Making the substitution u = log z, we get
logb 1
f@:/ L
log 2 u®

For a # 1, we have

umz{”%r@

1—a

log 2
(log b)'~* — (log 2)'™*
N 1—a 7
which diverges as b — oo if a < 1. If @ > 1, then
log 2)1-@
I1(b) — (05% as b — o0.
If a =1, then
1) = [loguls,
= log(logb) — log(log 2)
— 00 as b — oo.

e The improper integral therefore converges when a > 1, and then

o0 1 1 1-a
/ S
o x(logz)® a—1



5. Define f: [0,1] — R by
Jx ifreqQ,
J(@) = {0 itz ¢ Q.
Is f Riemann integrable on [0, 1]? Prove your answer.

Solution.
e The function f is not Riemann integrable.

e Suppose that P = {to,t1,...,t,} is any partition of [0, 1] (so ty = 0,
t, =1, and ty_1 < tg). Since every interval [t;_1, tx] contains irrational
numbers, we have

m (f, [tkfl,tk]) = inf {f(:E) T e [tkfl, tk]} = 0.

The lower Darboux sum of f is therefore given by

L(f,P) =" m(f, [t ta]) (e — ti1) = 0,
k=1
and the lower Darboux integral of f is
L(f) =sup{L(f, P) : P is a partition of [0, 1]} = 0.

e Since the rational numbers are dense in any interval, we have

M (f,[tk—1,tx]) =sup{f(x) : x € [tp_1,te]} = t&.

Define £: [0,1] — R by ¢(x) = z. Then

ulf,p) = ZM(ﬁ tr—1,tr]) (b — tr1)

k=1

= Z te (te — ti—1)
k=1
= U(,P).
Therefore

U(f) =inf{U(f, P) : P is a partition of [0, 1]} = U({).
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Since ¢ is Riemann integrable,

! 1
U(E):/ rdr = —.
0 2

So U(f)=1/2. Thus U(f) > L(f), and f is not Riemann integrable.



6. Suppose that

-2 for -1<2<0,
Flz) =1
zo+2 for0<z<1.

Evaluate the Riemann-Stieltjes integral

/_ 11 e dF ().

Briefly justify your computations.

Solution.

e We write F' = F} + F5, where

0 for —1<x<0,
Fi(r) = {2 for 0 <z <1,
B —2? for -1 <2 <0,
F(x) {x2 for 0 <z <1.

e Using standard properties of the Riemann-Stieltjes integral, and its
expression for jump and continuously differentiable integrators, we get

/ L dF(r) = / Lot AR () + / L aRy(a)

1 1 -1

1 0 1
— / e dFy(z) + / ¢ dFy(x) + / " dFy(x)
_ 0

1 -1

0 1
= eO.Q—I—/ erd(_$2)+/ erd(:E2)
0

-1

0 1
= 2 / 22e® de + / 22e” da
-1 0

= 2= [+ [,
= 2—(1—e)+(e—1)
= 2e.



7. (a) Find the Taylor series of e™* (at x = 0).

(b) Give an expression for the remainder R, (z) between e~* and its Taylor
polynomial of degree n — 1 involving an intermediate point y between 0 and
x.

(c) Prove from your expression in (b) that the Taylor series for e™* converges
to e~ for every # € R. (Don’t use general theorems.)

Solution.

e (a) Let f(x) = e *. Then

The kth Taylor coefficient of f is
_ M) _ ()"

k! k!

The Taylor series of e™” is therefore

— (=" , L, 154
ng —1—x+ix —gx +....

Qg

e (b) By the Taylor remainder theorem,

n—1
—1)*
o3 k,> o+ Ro(a), (1)
k=0 ’
where (1)
— ne_ n
R,(x) = R

for some y between 0 and x.

o (¢)If x>0, then 0 <y <z and e”¥ < 1. Hence

n
R, (x <$——>0 as n — 0o.
n!

(Note that if ¢, = x™/n! then ¢, 1/¢, = z/(n+ 1) < 1/2 for n > 2x,
so ¢, — 0 as n — oo for every z > 0.) Taking the limit as n — oo in
(1), we obtain that

) 1 k
6750 — ( ) .Tk.

k!

k=0
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If x <0, then e7¥ < e7, and the Taylor series also converges, since

n
_m|x_|_>0 as n — oo.

IR, (z)| <e oy
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8. Define f : R — R by

) — J 2 [sin(1/z) = 2] forx #0,
/(@) {O for z = 0.

(a) Prove that f(x) has a strict maximum at x = 0 (i.e. f(0) > f(z) for all
x #0).
(b) Prove that f is differentiable on R.

(c) Prove that f is not increasing on the interval (—e, 0) and f is not de-
creasing on the interval (0, €) for any € > 0.

Solution.
e (a) We have f(0) = 0. If = # 0, then since sin(1/z) <1
flz) <a2*[1-2] < —2?<0.
e (b) The function f is differentiable at any nonzero z since it is a product

and composition of differentiable functions. At x = 0 the function is
differentiable, with f’(0) = 0, since

iy (L0} =y o[ (3) 2]} =0

e (c¢) For z # 0, we compute using the chain and product rules that
, 1 (1
fi(r)=—cos|—|+2z|sin|—)—2].
x x
If |z| < 1/12 then

1 1

2z {sin <—) — 2” < 6|z < =,

x 2

— cos (é) — % < f(z) < —cos <§> + %

It follows that f' < 0 (hence f is strictly decreasing) in any interval
where cos(1/z) > 1/2, and f' > 0 (hence f is strictly increasing) in
any interval where cos(1/z) < —1/2. Since there exist such intervals
arbitrarily close to 0, the function f is not increasing throughout any
interval (—¢, 0), nor is it decreasing throughout any interval (0, €).

SO
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e This example shows that a differentiable function may attain a maxi-
mum at a point even though it’s not increasing on any interval to the
left of the point or decreasing on any interval to the right.
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