Advanced Calculus Math 127B, Winter 2005 Midterm 1

NA	ME	• • • • • • • •		 	 	 	 	 	 	
ΙD	NUM	IBEF	?							

No books, notes, or calculators. Show all your work. Give complete proofs of all your answers.

Question	Points	Score					
1	20						
2	20						
3	20						
4	20						
5	20						
Total	100						

1. (a) [15%] Find the radius of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{3^n}{n^2} x^n.$$

(b) [5%] Determine all points $x \in \mathbb{R}$ where the series converges.

2. [20%] Define a function $f: \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^n n!} x^{2n} = 1 - \frac{1}{2 \cdot 1} x^2 + \frac{1}{2^2 \cdot 2!} x^4 - \frac{1}{2^3 \cdot 3!} x^6 + \dots$$

(You can assume that this power series converges for all $x \in \mathbb{R}$.) Prove that f(x) satisfies the following initial value problem for an ordinary differential equation:

$$f' + xf = 0,$$

$$f(0) = 1.$$

3. (a) [10%] Define $f_n:[0,1]\to\mathbb{R}$ by

$$f_n(x) = \frac{x}{1 + nx}.$$

What is the pointwise limit of the sequence (f_n) as $n \to \infty$?

(b) [10%] Does (f_n) converge uniformly on [0, 1]? Justify your answer.

4. (a) [15%] Prove that the series

$$f(x) = \sum_{n=1}^{\infty} \frac{x}{n^2 + x^2}$$

converges uniformly on [0, 1].

(b) [5%] Prove that

$$\int_0^1 f(x) \, dx = \frac{1}{2} \sum_{n=1}^{\infty} \log \left(1 + \frac{1}{n^2} \right).$$

- **5.** (a) [15%] Suppose that (f_n) is a sequence of continuous functions $f_n:[a,b]\to\mathbb{R}$ that converges uniformly as $n\to\infty$ to a function $f:[a,b]\to\mathbb{R}$. If (x_n) is a sequence of points in [a,b] such that $x_n\to a$ as $n\to\infty$, prove that $\lim_{n\to\infty} f_n(x_n)=f(a)$. Hint: f is continuous at a.
- (b) [5%] Give an example to show that this result need not be true if (f_n) converges to f pointwise.