
Midterm: Math 201B
Winter, 2011

Solutions

1.[20 pts.] Say if the following Fourier series represent functions or distributions in C∞(T),
C(T), L2(T), or D′(T):

f(x) ∼
∞∑

n=−∞

(−1)n√
1 + n4

einx;

g(x) ∼
∞∑

n=−∞

1√
1 + n2

ein
2x;

h(x) ∼
∞∑

n=−∞
e−n

4
einx;

k(x) ∼
∞∑

n=−∞
en

4
einx.

You may use standard theorems proved in class to justify your answers.

Proof:

• First, let’s work the details for

f(x) ∼
∞∑

n=−∞

(−1)n√
1 + n4

einx.

We can see that the n-th Fourier coefficient is given by

f̂(n) =
(−1)n√
1 + n4

.

From here we see that |f̂(n)| behaves as
1

n2
and this implies that f ∈ A(T), which

implies that f ∈ C(T).

More precisely,
∞∑

n=−∞
| (−1)n√

1 + n4
| ≤

∞∑
n=−∞

1

n2
<∞.
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Note that here we used the p-series test that gave us that indeed the series is convergent.

Further we want to investigate if f ∈ L2(T) or D′
(T) or C∞(T).

To see if f ∈ L2(T), we compute the norm of ‖f‖L2(T), and for this we make use of
Perceval’s theorem:

∞∑
n=−∞

| (−1)n√
1 + n4

|2 =
∞∑

n=−∞

1

1 + n4
<

∞∑
n=−∞

1

n4
<∞.

Therefore, we got f ∈ L2(T) .

We check now if f ∈ C∞(T). We easily see that f ′ /∈ C ′(T), and therefore f ′ /∈ C∞(T).

It remais to check if f ∈ D′
(T). To check this we can see that the Fourier coefficients of f

have slow growth, meaning that (∃) a non-negative integer k and a constatnt C such that

|f̂(n)| ≤ C(1 + n2)
k
2 for all n ∈ Z. (1)

Indeed, there (∃) a non-negative integer k and a constatnt C such that

1√
1 + n4

≤ C(1 + n2)
k
2 for all n ∈ Z,

which implies f ∈ D′
(T).

• For

g(x) ∼
∞∑

n=−∞

1√
1 + n2

ein
2x.

Observe that using Perceval’s theorem we can compute the L2(T) norm of g:

∞∑
n=−∞

| 1√
1 + n2

|2 =
∞∑

n=−∞

1

1 + n2
≤

∞∑
n=−∞

1

n2
<∞.

Therefore g(x) ∈ L2(T).

Clearly,
∞∑

n=−∞
| 1√

1 + n2
| =

∞∑
n=−∞

1√
1 + n2
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is divergent. So, g(x) /∈ A(T).
Since

∞∑
n=−∞

|n|2s

1 + n2
<∞

for s < 1
2 , we have g ∈ Hs(T) for s < 1

2 . This condition is not sufficient for the Sobolev
imbedding theorem to imply anything about the continuity of g.

To check if g ∈ D′
(T), we can see that the criteria (1) is satisfiedf, and hence g ∈ D′

(T).

Now, we want to see if g ∈ C∞(T), but since the series

∞∑
n=−∞

|n|k|ĝ(n)|2

is a divergent series for all k’s. Hence, g /∈ C∞(T).

• For

h(x) ∼
∞∑

n=−∞
e−n

4
einx.

The n-th Fourier coefficient of h is given by ĥ(n) = e−n
4
. But this goes to 0 as n → ∞

faster than any polynomial. So, h ∈ C∞(T) , which obviously implies that h ∈ C(T) and

h ∈ L2(T) . Note that here we used Sobolev’s Imbedding theorem. From (1), we also get

that h ∈ D′
(T).

• For

k(x) ∼
∞∑

n=−∞
en

4
einx.

We check to see if k(x) ∈ L2(T), but since the series

∞∑
n=−∞

|en4 |2

is divergent, we get that k(x) /∈ L2(T). Also, we can observe that the criteria (1) is

not satisfied i.e., k has very fast growth (in fact exponential growth). This implies that

k /∈ D′
(T). From the same arguments we use aboved we can conclude that k /∈ C∞(T) ,

which trivially implies that k /∈ C(T).
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2.[20 pts.] Define an operator K : L2(T)→ L2(T) by

Kf(x) =

∫ x

0

[
f(y)− f̃

]
dy, f̃ =

1

2π

∫ 2π

0
f(x) dx.

(a)[8 pts.] Show that K is a bounded linear operator on L2(T).

Proof:
• The boundnedness of the operator K follows from the following:

‖K‖L2(T) =

∫ 2π

0
|
∫ x

0
(f(y)− f̃) dy|2 dx

≤
∫ 2π

0

[∫ x

0
|f(y)− f̃ | dy

]2
dx

≤
∫ 2π

0

[∫ 2π

0
|f(y)− f̃ | dy

]2
dx.

Using Cauchy-Schwarz inequality, we get:

‖K‖L2(T) ≤
∫ 2π

0
‖1‖2L2(T)‖f(y)− f̃‖2L2(T) dx

=(2π)3‖f(y)− f̃‖2L2(T)

≤C(‖f‖2L2(T) + ‖f̃‖2L2(T)).

But ‖f̃‖2L2(T) can be bounded as follows:

‖f̃‖2L2(T) =

∫ 2π

0

1

(2π)2

[∫ 2π

0
f(x) dx

]2
dy

≤‖1‖2L2(T)‖f‖
2
L2(T).

Note that we again used Cauchy-Schwarz inequality. Also, denoting C2 := ‖1‖2L2(T), we
get:

‖K‖L2(T) ≤C‖f‖2L2(T) + C2‖f‖2L2(T) ≤ C̃‖f‖
2
L2(T),

where C + C2 := C̃.
Hence K is bounded.

• The linearity of K follows right away from the linearity of the integral.
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(b)[8 pts.] What is the kernel of K?

Proof:

Ker K =
{
f ∈ L2(T) | Kf = 0

}
.

So, f ∈ KerK implies

Kf(x) = 0⇔
∫ x

0

[
f(x)− f̃

]
dy = 0 for all x ∈ [0, π]⇔ f(y) = f̃ ∀ y ∈ [0, 2π] .

This says that the kernel of K is formed by L2 constant functions.

We can also see this result via Fourier series by observing that f̃ = f̂(0). Note that it
makes sense to write f ’s Fourier series since f ∈ L2(T).
Therefore, we can conclude that

KerK =
{
f ∈ L2(T) | f(x) = f̂(0) = f̃

}
⇔ KerK =

{
f ∈ L2(T) | f(x) = constant

}
.

(c)[4 pts.] ([2 pts.]) What is the range of K?([1 pts.]) Can you characterize it items of
Sobolev spaces? ([1 pts.])Is the range of K closed?

Proof:

RanK =

{
g ∈ L2(T) | g(x) =

∫ x

0

[
f(y)− f̃

]
dy

}
⇔

RanK =
{
g ∈ L2(T) | g′(x) = f(x)− f̃ ∈ L2(T)

}
.

This implies that RanK is a subset of H1(T). More explicitly:

RanK =
{
g ∈ H1(T) | g(0) = 0

}
.

The range is not closed, since the L2-limit of differentiable functions need not be differen-
tiable. For example,

gn(x) =
n∑
k=1

1

nπ
sin(nπx) =

∫ x

0

n∑
k=1

cos(nπy) dy ∈ RanK
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and gn → g in L2 as n → ∞, as follows from the Fourier sine expansion of functions in
L2(0, 1), where

g(x) =
∞∑
k=1

1

nπ
sin(nπx) /∈ RanK.
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3.[20 pts.] Let {xn}, {yn} be sequences in a Hilbert space H.

(a)[12 pts.] If xn → x (strongly) and yn ⇀ y (weakly) as n→∞, prove that

〈xn, yn〉 → 〈x, y〉 as n→∞.

Proof: Since {xn}n is weak convergent to x, then the uniformly boundedness principle
implies {xn}n is bounded. Now look at the difference of 〈xn, yn〉 and 〈x, y〉, we can see

|〈xn, yn〉 − 〈x, y〉| = |〈xn, yn − y〉+ 〈xn − x, y〉|
≤ ‖xn‖‖yn − y‖+ |〈xn − x, y〉|

≤
(

sup
n
‖xn‖

)
‖yn − y‖+ |〈xn − x, y〉| .

Since {xn}n converges to x weakly, and {xn}n is bounded and {yn}n converges to y strongly,
we find

lim
n→∞

|〈xn, yn〉 − 〈x, y〉| = 0,

which proves our assertion.

(b)[8 pts.] Prove or give a counter-example: if xn ⇀ x and yn ⇀ y then

〈xn, yn〉 → 〈x, y〉 as n→∞.

Proof: The result stated above is false. Take an orthonormal basis of H; for example
{en}∞n=1, where en = (0, 0, 0, · · · , 0, 1, 0, · · · ) is the vector that has 1 on the n-th position
and zero in rest. Using Bessel’s inequality, we can prove that en ⇀ 0. Consider the
following two sequences

{xn}∞n=1 = {yn}∞n=1 = {en}∞n=1

Then 〈xn, yn〉 = 〈en, en〉 = 1.
Hence

〈xn, yn〉9 〈x, y〉 as n→∞.
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4.[20 pts.] (a)[10 pts.]If f ∈ L1(T), show that

f̂(n) =
1

4π

∫
T

[f(x)− f(x+ π/n)] e−inx dx.

Proof: Computing the LHS we get:

1

4π

∫
T

[f(x)− f(x+ π/n)] e−inx dx =
1

4π

∫
T
f(x)e−inx dx− 1

4π

∫
T
f(x+ π/n)e−inx dx

=
1

2
f̂(n)− 1

4π

∫
T
f(x+ π/n)e−in(x+

π
n
)eiπ dx

=
1

2
f̂(n)− 1

4π
eiπ
∫
T
f(x+ π/n)e−in(x+

π
n
) dx

=
1

2
f̂(n) +

1

4π

∫
T
f(x+ π/n)e−in(x+

π
n
) dx

=
1

2
f̂(n) +

1

2

∫
T
f̂(n) dx

=f̂(n).

Note that we just did a change of variable to get from the third to last row to the second
to last row of the above equality.

(b)[10 pts.] Suppose that f ∈ C(T) is Hölder continuous with exponent α, where
0 < α ≤ 1, meaning that there is a constant M > 0 such that

|f(x+ h)− f(x)| ≤M |h|α for all x, h ∈ T.

Show that there is a constant C > 0 such that∣∣∣f̂(n)
∣∣∣ ≤ C

|n|α
for all nonzero integers n.

Proof: Indeed ∣∣∣f̂(n)
∣∣∣ =

1

4π

∣∣∣∣∫
T

[f(x)− f(x+ π/n)] e−inx dx

∣∣∣∣
≤ 1

4π

∫
T
|f(x)− f(x+ π/n)| dx

≤ 1

4π

∫
T
M
(π
n

)α
dx

≤ 1

4π
(2π)M

(π
n

)α
=C

1

|n|α
, where C =

Mπα

2
.
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For extra credit, if you have time.

(c)[10 pts.] If 0 < α < 1, show that the function

f(x) =

∞∑
k=0

1

2kα
ei2

kx

is Hölder continuous with exponent α and that f̂(n) = 1/nα for n = 2k (so the above result
is optimal). Hint. You can assume the inequality∣∣∣1− eiθ∣∣∣ ≤ |θ| for θ ∈ R.

Proof:
• First, if f̂(n) = 1

nα and n = 2k, we obviously get that

f̂(n) =
1

2kα
=

1

(2k)α
=

1

|n|α
.

• The last thing we need to prove is that

f(x) =
∞∑
k=0

1

2kα
ei2

kx

is Hölder continuous with exponent α.
The Hölder condition automatically holds for |h| ≥ 1, say, with M = 2‖f‖∞, so (by

increasing M if necessary) we just need to prove it for |h| < 1.
To estimate the difference |f(x + h) − f(x)| we split it in two parts: one with k ≤ N

and the other with k > N , where we will choose N depending on h in an appropriate way:

|f(x+ h)− f(x)| =

∣∣∣∣∣
∞∑
k=0

1

2kα
ei2

k(x+h) −
∞∑
k=0

1

2kα
ei2

kx

∣∣∣∣∣
≤
∞∑
k=0

1

2kα

∣∣∣ei2k(x+h) − ei2kx∣∣∣
≤

N∑
k=0

1

2kα

∣∣∣ei2kh − 1
∣∣∣+

∞∑
k=N+1

1

2kα

∣∣∣ei2kh − 1
∣∣∣ .

9



We estimate the first part by using the inequality in the hint, which works when 2kh is
small, and summing the resulting geometric series (where α < 1):

N∑
k=0

1

2kα

∣∣∣ei2kh − 1
∣∣∣ ≤ N∑

k=0

2k|h|
2kα

≤ |h|
N∑
k=0

2k(1−α)

≤

(
2(N+1)(1−α) − 1

21−α − 1

)
|h|.

We estimate the second term by using |eiθ − 1| ≤ 2, which works when 2kα is large:

∞∑
k=N+1

1

2kα

∣∣∣ei2kh − 1
∣∣∣ ≤ ∞∑

k=N+1

2

2kα

≤ 2

2(N+1)α

(
1

1− 1/2α

)
.

It follows that there are constants A, B independent of h and N such that

|f(x+ h)− f(x)| ≤ A2N(1−α)|h|+ B

2Nα
.

For any |h| < 1, we can choose an integer N such that

1

|h|
≤ 2N ≤ 2

|h|
.

Using this N in the previous inequality, we find that there is a constant C independent of
h such that

|f(x+ h)− f(x)| ≤ C|h|α
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