
201B, Winter ’11, Professor John Hunter
Homework 2 Solutions

1. If 1 ≤ p <∞, show the trigonometric polynomials are dense in Lp(T).

Proof. For this problem I am going to give two different approches of proving
this problem.

First proof is based on the result that was done in class, meaning that
the trigonometric polynomials are dense in C(T). This kind of approch will
use ε

2
trick.

Let’s begin by considering any function f(x) ∈ Lp(T). The idea is to
approximate it somehow with a trigonometric polynomial, because this is what
the problem is asking us to do.
For this let ε > 0. Since C(T) is dense in Lp(T) there is a function g(x) ∈ C(T)
such that

‖f − g‖p <
ε

2

As mentioned above, using the result proved in class, meaning that the trigono-
metric polynomials are dense in C(T), then there exists a trigonometric poly-
nomial p(x) ∈ C(T) such that

‖g − p‖∞ <
ε

2(2π)1/p
.

Since for all x ∈ T,

|g(x)− p(x)| ≤ ‖g − p‖∞,

then

‖g − p‖p =

(∫
T
|g(x)− p(x)|pdx

)1/p

≤
(∫

T
‖g − p‖p∞dx

)1/p

<

(∫
T

εp

2p2π
dx

)1/p

=
ε

2
.

Triangle inequality implies:

‖f − p‖p ≤ ‖f − g‖p + ‖g − p‖p <
ε

2
+
ε

2
1



Hence, trigonometric polynomials are dense in Lp(T).

Second proof. The second proof is using problem 3 from this assignment.
Another result we will going to use is:

Proposition 0.1. Assume we have f ∈ L1(T) and g(x) = eixt then the
convolution of f with g is going to give us a trigonometric polynomial.

Proof.

f ∗ g =

∫
T
f(y)g(x− y)dy

=

∫
T
f(y)ei(x−y)tdy

=

∫
T
f(y)eixte−iytdy

= eixtf̂(y).

So, indeed we got that f ∗ g is a trigonometric polynomial.
�

Note:

1) The above results holds if we assume a more complex form of the trigono-
metric polynomial g i.e., if we assume g(x) =

∑
n ane

ixt where an ∈ R.
2) Also, the result it is still true is we assume that f ∈ Lp(T). This can be
proved in the same way we did the proof of the lemma (0.1).

• Fejer kernel is indeed a trigonometric polynomial, hence when we do the
convolution it with any function in L1(T) (or any function f ∈ Lp(T))is going
to give us a trigonometric polynomial. Please verify that indeed this result is
true. You will see that indeed is the same proof for Lp case as we did for L1

case.

• Also, you can use the class notes to conclude that Fejer kernel is an ap-
proximate identity. (A good exercise for you is to try proving this fact by
yourself, not using the class notes.)

• Putting together all the information we have found so far, we can apply
problem 3 and conclude that for any function f ∈ Lp(T)

Kn(x) ∗ f(x)→ f(x), as n→∞,
in the Lp(T)-norm. In other words any function f ∈ Lp(T) can be approx-
imated with a trigonometric polynomial. Hence, trigonometric polynomials
are dense in Lp(T).

�



2. For fixed z ∈ C, let Jn(z) denote the nth Fourier coefficient of the function
eiz sinx, meaning that

Jn(z) =
1

2π

∫ 2π

0

eiz sinxe−inxdx for n ∈ Z.

(a) What is Jn(0) Show that J−n(z) = (−1)nJn(z).

Proof. Note that we have

J0(0) = 1

Jn(0) =
1

2π

∫ 2π

0

e−inx dx

= δ0,n.

Since,

(−1)nJn(z) =
eiπn

2π

∫ 2π

0

eiz sinxe−inx dx

=
1

2π

∫ 2π

0

eiz sinxein(π−x) dx.

then we can do the change of variables y = π − x, and obtain

− 1

2π

∫ −π
π

eiz sin(π−y)einy dy =
1

2π

∫ π

−π
eiz sin yeiny dy = J−n(z).

�

(b) Derive the recurrence relations

2n

z
Jn(z) = Jn−1(z) + Jn+1(z), 2J ′n(z) = Jn−1(z)− Jn+1(z),

where the prime denotes a derivative with respect to z.



Proof. This is mostly based on integration’s techniques. Integration by
parts gives us:

Jn−1(z) + Jn+1(z) =
1

2π

∫ 2π

o

eiz sinxe−inx(eix + e−ix) dx

=
2

2π

∫ 2π

0

eiz sinx cos(x)e−inx dx

=
2

2π

[
e−inxeiz sinx

iz

∣∣∣2π
0
−
∫ 2π

0

eiz sinx

iz

(
−ine−inx dx

)]

=
2n

z

1

2π

∫ 2π

0

eiz sinxe−inx dx

=
2n

z
Jn(z).

For the second relation we have:

2J ′n(z) =
1

π

d

dz

(∫ 2π

0

eiz sinxe−inx dx

)

=
1

π

∫ 2π

0

eiz sinxe−inxi sinnx dx

=
1

π

∫ 2π

0

eiz sinxe−inxi
eix − e−ix

2i
dx

=
1

2π

∫ 2π

0

eiz sinxe−i(n−1)x − eiz sinxe−i(n+1)x dx

= Jn−1(z)− Jn+1(z).

�

(c) Deduce from (b) that Jn(z) is a solution of Bessel’s equation

z2J ′′n + zJ ′n + (z2 − n2)Jn = 0.

Proof. We have

zJ ′n = zJn−1 − nJn
zJn+1 = nJn − zJ ′n



Differentiating both sides of the first equation from the above system and
moving everything on the right side of the equation we see that

zJ ′′n + (n+ 1)J ′n − Jn−1 − zJ ′n−1 = 0.

Multiplying both sides by z we get:

z2J ′′n + (n+ 1)zJ ′n − zJn−1 − z2J ′n−1 = 0

Also, by moving everything in the remaining equation to the left side of the
equation and multiplying both sides by n we get

nzJ ′n − nzJn−1 + n2Jn = 0

Therefore

z2J ′′n + (n+ 1)zJ ′n − zJn−1 − z2J ′n−1 − (nzJ ′n − nzJn−1 + n2Jn) =

= z2J ′′n + zJ ′n + z(n− 1)Jn−1 − z2J ′n−1 − n2Jn

= z2J ′′n + zJ ′n + z[(n− 1)Jn−1 − zJ ′n−1]− n2Jn

= 0

Hence,

zJn = (n− 1)Jn−1 − zJ ′n−1.
Substituting this into the previous equation we get

z2J ′′n + zJ ′n + (z2 − n2)Jn = 0

�

3. A family of (not necessarily positive) functions {φn ∈]L1(T) : n ∈ N} is an
approximate identity if∫

φndx = 1 for every n ∈ N;∫
|φn|dx ≤M for some constant M and all n ∈ N;

lim
n→∞

∫
δ<|x|<π

|φn|dx = 0 for every δ > 0.

If f ∈ L1(T), show that φn ∗ f → f in L1(T) as n→∞.



Proof. The problem is asking to prove that if f ∈ L1(T), show that φn∗f → f
in L1(T) as n→∞, which is equivalent with proving that

‖φn ∗ f − f‖L1(T) → 0 as n→∞.
The idea is to first prove this result for a continuous function f and then

using the desity of the continuous functions in the L1(T) space for p ≥ 1 to
conclude the desired result.

We will choose a sequence of continuous functions {gn}n that approximates
f in the L1-norm. Then we will prove that ‖φn ∗ gn − φn ∗ f‖L1(T) is ”small”
and at the same time we have that ‖φn ∗ gn − gn‖L1(T) is also ”small”. By
small I mean a ”quantity” less than ε

3
.

Let ε > 0 be given. Since C(T) is dense in L1(T), then we can find a
sequence of functions {gn}n in C(T) such that

‖f − gn‖L1(T) <
ε

3M
,

where M is just a positive constant. The reason we picked ε
3M

is just
something that usually is done just because at the end of the proof we what
to get a nice looking inequality.

Using the first property of the approximate identity, we have the following:

‖φn ∗ gn − φn ∗ f‖L1(T) =

∫
T
|
∫
T
φn(x− y)gn(y) dy −

∫
T
φn(x− y)f(y) dy | dx

=

∫
T
|
∫
T
φn(x− y) [gn(y)− f(y)] dy | dx

≤
∫
T

(∫
T
|φn(x− y)||gn(y)− f(y)| dy

)
dx.

Changing the order of integration (here you need to be careful and see that
Fubini’s theorem really applies!)

‖φn ∗ gn − φn ∗ f‖L1(T) ≤
∫
T

(∫
T
|φn(x− y)||gn(y)− f(y)| dy

)
dx

=

(∫
T
|φn(x− y)| dx

)(∫
T
|gn(y)− f(y)| dy

)
≤M

ε

3M

=
ε

3



At this point we still have to prove that

‖φn ∗ gn − gn‖L1(T)

is a ”small quantity” and afterward using the ε
3

trick, we are done.

Therefore, using again the properties of the approximate identity φn, we get

‖φn ∗ gn − gn‖L1(T) =

∫
T
|
∫
T
φn(x− y)gn(y) dy − gn(x) | dx

=

∫
T
|
∫
T
φn(x− y)gn(y) dy −

∫
T
φn(x− y)gn(x) dy | dx

=

∫
T
|
∫
T
φn(x− y) [gn(y)− gn(x)] dy | dx

≤
∫
T

(∫
T
| φn(x− y) || gn(y)− gn(x) | dy

)
dx.

Now, we need to handle the inner integral. The way to do it, is to split the
integral in a ”wise” way. You will see right away what I mean by wise. An
important thing that we didn’t use yet, is the continuity of the gn’s.

Hence, for any ε > 0 there exists a δ > 0 such that |x − y| < δ will imply
that

|gn(x)− gn(y)| < ε

♥M
.

We will figure out later what ♥ is. This usually is ”fixed” at the end of the
proof. In our case it will turn out to be ♥ = 12π.

So, the gn’s are continuous functions on the T, which is a compact set,
therefore we have that gn is a uniform continuous function for every n ∈ N.

Hence there exists a constant A > 0 such that

sup
x,y∈T

|gn(x)− gn(y)| < A.

Then the following holds:



‖φn ∗ gn − gn‖L1(T) =

∫
T
|
∫
T
φn(x− y)gn(y) dy − gn(x) | dx

≤
∫
T

(∫
|x−y|<δ

| φn(x− y) || gn(y)− gn(x) | dy

+

∫
δ<|x−y|<π

| φn(x− y) || gn(y)− gn(x) | dy
)
dx

≤
∫
T

(
ε

♥M

∫
|x−y|<δ

| φn(x− y) | dy + A

∫
δ<|x−y|<π

| φn(x− y) | dy
)
dx.

Observe that∫
|x−y|<δ

| φn(x− y) | dy ≤
∫
T
| φn(x− y) | dy

=

∫
T
| φn(y) | dy

≤M

Note:

• The equality above holds since the only thing we just did was a change a
variable!
• The last inequality holds because we know that φn is an approximate iden-
tity.

Since limn→0

∫
T
|φ(x)| dx = 0, then there exists an integer N ∈ N such that

for no matter what n > N , we have that∫
T
|φn(x)| dx < ε

12πA
.

Doing almost the same thing for the second integral we obtained after split-
ting the inner one, we get∫

δ<|x−y|<π
|φ(x)| dy <

∫
T
|φ(x)| dy

=

∫
T
|φ(y)| dy

≤ ε

12πA
.



Putting everything we got so far together, we get that

‖φn ∗ gn − gn‖L1(T)

≤
∫
T

( ε

12πM
M +

ε

12πA
A
)
dx

=
ε

6π

∫
T
dx

=
ε

6π
2π

=
ε

3
.

Thus,

‖φn ∗ f − f‖L1(T) ≤ ‖φn ∗ f − φn ∗ gn‖L1(T) + ‖φn ∗ gn − gn‖L1(T) + ‖f − gn‖L1(T)

<
ε

3
+
ε

3
+
ε

3
= ε.

Conclusion: We indeed got that ‖φn ∗ f − f‖L1(T) → 0 when n→∞, which
proves our problem.

�

4. (a) Let {an : n ≥ 0} be a sequence of non-negative real numbers such that
an → 0 as n→∞ and

an+1 − 2an + an−1 ≥ 0.

Show that the series∑
n≥1

n(an+1 − 2an + an−1)

converges to a0. Hint:
∑

(an+1−an) is a convergent, decreasing telescop-
ing series.

Proof. Take the sequence {an}n as said in the hypothesis: a sequence of
nonzero real terms with the property

an+1 − 2an + an−1 ≥ 0.

Notice that this implies that an − an+1 ≤ an−1 − an and therefore, if we
define the sequence given by the general term bn := an− an+1 then {bn}n
is a decreasing sequence. It is not hard to see that

∑
n=0 bn = 0. The

only thing you have to do is to first compute the SN , which is the N -th
terms partial sum and then make N go to ∞. Expanding the sum SNwe



get

SN =
∞∑
n=0

bn

= b0 + b1 + · · ·+ bN

= a0 − a1+
a1 − a2+
a2 − a3+
· · · · · ·
aN−2 − aN−1+
aN−1 − aN .

= a0 − aN .

Making N going to ∞, and using the hypothesis of the problem (that
an → 0 as n→∞), we get that indeed SN → a0 as n→∞; i.e∑∞

n=0 bn = a0.

Now, let’s try to prove that
∑∞

n=1 n (an+1 − 2an + an−1) converges to a0.
Spitting the sum above and computing the sum of the first N terms we
get:

sN =
N∑
n=1

n(an+1 − 2an + an−1)

= a0 − aN −N(aN − aN+1)

= a0 − aN −NbN .
More explicitly:

SN =
N∑
n=1

n (an+1 − 2an + an−1)

=
N∑
n=1

n (an+1 − an)−
N∑
n=1

n (an − an−1)

= a0 − aN −NbN .
Therefore

∞∑
n=1

n(an+1 − 2an + an−1) = lim
N→∞

a0 − aN −NbN

= a0 − lim
n→∞

nbn.

One thing that we need to show is that limn→∞ nbn = 0.

I claim that limn→∞ nbn = 0.



Proof of the claim:

The sequence bn is nonnegative and decreasing, so

0 ≤ n

2
bn ≤

n∑
[n/2]+1

bk.

Since
∑
bk converges, it is Cauchy

lim
m,n→∞

n∑
k=m

bk → 0

and the result follows.

Coming back to the limit we are asked to compute, we have
∞∑
n=1

n(an+1 − 2an + an−1) = lim
N→∞

a0 − aN −NbN

= a0 − lim
n→∞

nbn

= a0.

�

(b) For N ≥ 0, let KN ≥ 0 denote the Fejér kernel

KN(x) =
N∑

n=−N

(
1− |n|

N + 1

)
einx.

Show the series

f(x) =
∑
n≥1

n(an+1 − 2an + an−1)Kn−1(x)

converges in L1(T) to a non-negative function f ∈ L1(T) whose Fourier
coefficients are a|n|, i.e.,

f(x) ∼
∑
n∈Z

a|n|e
inx.

Proof.

Denote by fN(x) :=
∑N

n=1 n(an+1 − 2an + an−1)Kn−1(x).

• First observe that fN ≥ 0 for all N .

• One more important comment to make is that fN+1 ≥ fN for all N
since we just add a positive term to fN to get fN+1. Therefore we are in
the hypothesis of the Monotone Convergence Theorem:



fN → f pointwise and

∫
fNdx→

∫
fdx

• Since f is the limit of positive functions, it is non-negative; also,

|fN |L1(T) =

∫
T
| fN | dx =

∫
fN dx.

• Similarly we get, |f |L1(T) =

∫
T
f dx.

We conclude that, if limN→∞ |fN |L1(T) is finite, then this will implicitly
give us f ∈ L1(T).

For ∀N we obtain:

|fN |L1(T) =
N∑
n=1

n(an+1 − 2an + an−1)
n−1∑

j=−(n−1)

[(
1− |j|

n

)∫
T
eijxdx

]
.

Since ∫
T
eijxdx = 2πδ0,j

and

1− |j|
n

= 1,

when j = 0 we get

|fN |L1(T) = 2π
N∑
n=1

n(an+1 − 2an + an−1).

• Notice that
N∑
n=1

n(an+1 − 2an + an−1)→ a0

as N →∞, hence

|fN |L1(T) = 2πa0

and also f ∈ L1(T).



Coming back to the last part of the question: we will start computing
the Fourier coefficients of f(x):

f̂(j) =
1

2π

∞∑
n=1

n(an+1 − 2an + an−1)
n−1∑

k=−(n−1)

(
1− |j|

n

)∫
T
eikxe−ijxdx

• Now, since {einx |n ∈ Z} is an orthogonal set (this is easy to check),
then ∫

T
eikxe−ijxdx 6= 0

iff
−(n− 1) ≤ j ≤ n− 1

iff |j|+ 1 ≤ n.

If n < |j|+ 1 then

n(an+1 − 2an + an−1)
n−1∑

k=−(n−1)

(
1− |j|

n

)∫
T
eikxe−ijxdx = 0.

• Therefore we come to the conclusion:

f̂(j) =
2π

2π

∞∑
n=|j|+1

n(an+1 − 2an + an−1)
n−1∑

k=−(n−1)

(
1− |j|

n

)
δkj

=
∞∑

n=|j|+1

n(an+1 − 2an + an−1)

(
1− |j|

n

)
The trick here is to rearrange the terms, or in other words, to shift the
counting with |j| step behind, so that we will recover exactly the same
kind of series we just proved above that converges to a0, but is our case
since the index changed, we get that the series converges to a|j|.

• Therefore,

f̂(j) = a|j|

Hence the Fourier series of f (after renaming the j; it became n) is

f(x) ∼
∑
n∈Z

a|n|e
inx.



�

(c) Show there is a function f ∈ L1(T) such that

f(x) ∼
∑
|n|≥2

1

log |n|
einx.

Proof.
• This question is clearly based on the the facts we have just proved in
(b).In order to prove that such an L1 function exists, it is sufficient to

show that the sequence an =
1

ln(n)
for n ≥ 2 satisfies the properties listed

in part (a). This will be trivial to check.

Checking that

an+1 − 2an + an−1 ≥ 0

holds, for the an we just defined translates to an−an+1 ≤ an−1−an which
is equivalent to

1

ln(n)
− 1

ln(n+ 1)
≤ 1

ln(n)
− 1

ln(n− 1)
.

• Suffices to show that the function we define being

m(x) :=
1

ln(x)
− 1

ln(x+ 1)

is a decreasing function on the interval [2,∞). To see this we use calculus;
compute the derivative m

′
(x) set it zero, and try to find the extrema

points. Then construct the chart (or using the second derivative test)
and see that indeed the relation from part (a) is satisfied(let me know if
you have trouble finishing up those details!).

�

(d) Suppose that f ∈ L1(T) has imaginary Fourier coefficients {ibn : n ∈ Z}
such that bn ≥ 0 for n ≥ 0 and b−n = −bn. Show that∑

n≥1

bn
n

converges.
Hint: The integral

F (x) =

∫ x

0

f(t)dt

is a continuous function (in fact, absolutely continuous) with Fourier
coefficients

1

2π

∫
F (x)e−inxdx =

bn
n

for n 6= 0.



Use the fact that KN ∗ F (0) converges to F (0) since {KN} is an approx-
imate identity.

Proof. From Amanda’s .tex file

For n 6= 0 the Fourier coefficients of F (x) are defined to be:

F̂ (n) =
1

2π

∫ 2π

0

(∫ x

0

f(t)dt

)
e−inxdx

Using integration by parts with u =
∫ x
0
f(t)dt and dv = e−inxdx we get

that

F̂ (n) =
e−inx

in2π

∫ x

0

f(t)dt
∣∣2π
0

+
1

in2π

∫ 2π

0

f(x)e−inx dx

=
f̂(n)

in
=
ibn
in

=
bn
n
.

Since F is a continuous function, we get that F is equals its Fourier series.
Therefore

F (0) = F̂ (0) +
∑
n 6=0

bn
n

Since b−n = −bn we see that

b−n
−n

=
−bn
−n

=
bn
n

Hence

−∞∑
n=−1

bn
n

=
∞∑
n=1

b−n
−n

=
∞∑
n=1

bn
n
.

• So

F (0) = F̂ (0) + 2
∞∑
n=1

bn
n

Since F (0) =

∫ 0

0

f(t)dt = 0 it follows that
∞∑
n=1

bn
n

=
−F̂ (0)

2
and therefore

the sum converges. �

Proof.
• If there were such a function f(x), its Fourier series coefficients isgn n

log |n|



satisfy the conditions in part d. Hence by the contra-positive of (d), we
need to show that

∞∑
n=2

sgn(n)

n log |n|
=
∞∑
n=2

1

n log n

is a divergent series.
• This is a series with positive terms and therefore using your experience
gained in working with series, you can see that the right convergence test
to use will be integral test (a quicker one will be the comparison test).

•We get that the series diverges. Hence we conclude that we cannot find
a function f ∈ L1(T) with this Fourier expansion given in the hypothesis
of part d.

�


