
201B, Winter ’11, Professor John Hunter
Homework 3 Solutions

1. Suppose that
∞∑
n=0

cn is a series of complex numbers with partial sums

sn =
n∑
k=0

ck.

The series is Borel summable with Borel sum s if the following limit exists:

s = lim
x→+∞

e−x

(
∞∑
n=0

snx
n

n!

)
.

(a) If the series
∞∑
n=0

cn = s is convergent, show that it is Borel summable with

Borel sum equal to s, i.e. Borel summation is regular.

Proof. Let ε > 0 be given. Choose N such that |sn − s| < ε for n ≥ N .
Now,

lim
x→+∞

e−x

(
∞∑
n=0

snx
n

n!

)
= lim

x→+∞
e−x

(
N∑
n=0

snx
n

n!
+

∞∑
n=N+1

snx
n

n!

)

= lim
x→+∞

e−x

(
N∑
n=0

snx
n

n!

)
+ lim

x→+∞
e−x

(
∞∑

n=N+1

snx
n

n!

)

= lim
x→+∞

e−x

(
∞∑

n=N+1

snx
n

n!

)
.

The reaon why the first term went away is because
∑N

n=0
snxn

n!
is just a

constatnt, and when we multiply it by e−x and then take the limit as
x→∞, we get zero.
So, now we have that∣∣∣∣∣s− lim

x→+∞
e−x

(
∞∑

n=N+1

snx
n

n!

)∣∣∣∣∣ =

∣∣∣∣∣ lim
x→+∞

e−x

(
∞∑
n=0

sxn

n!
−

∞∑
n=N+1

snx
n

n!

)∣∣∣∣∣
=

∣∣∣∣∣ lim
x→+∞

e−x

(
∞∑
n=0

(s− sn)xn

n!
+

N∑
n=0

snx
n

n!

)∣∣∣∣∣
≤ |s− sn| lim

x→+∞

∣∣∣∣∣e−x
∞∑
n=0

xn

n!

∣∣∣∣∣+ lim
x→+∞

e−x

∣∣∣∣∣
N∑
n=0

snx
n

n!

∣∣∣∣∣
< ε(1) + 0 = ε.
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Then, since our choice of ε was arbitrary, we must have that Borel sum-
mation is regular.

�

(b) For what complex numbers a ∈ C is the geometric series
∞∑
n=0

an

Borel summable? What is its Borel sum? For what a ∈ C is this series
Cesàro summable? Abel summable?

Proof. See remarks.

Borel Summability

By part a), we know that this sum will converge if |a| < 1, and from part

a) we know that the limit is
1

1− a
.

Note that if a = 1 we have

lim
x→+∞

e−x
∞∑
n=0

nxn

n!
= lim

x→+∞
e−x

∞∑
n=1

nxn

(n)!

= lim
x→+∞

e−x
∞∑
n=1

xn

(n− 1)!

= lim
x→+∞

e−x
∞∑
n=0

xn+1

(n)!

= lim
x→+∞

x =∞.

Now, suppose a 6= 1 and therfore we can write a in its general form
a = u+ iv. Then sn = 1−an+1

1−a .
So,

lim
x→+∞

e−x
∞∑
n=0

1− an+1

1− a
xn

n!
=

1

1− a
lim

x→+∞
e−x

∞∑
n=0

(1− an+1)
xn

n!

=
1

1− a

(
1− a lim

x→+∞
e−x

∞∑
n=0

anxn

n!

)
=

1

1− a

(
1− a lim

x→∞
e(a−1)x

)
=

1

1− a

(
1− a lim

x→∞
e(u+iv−1)x

)
=

1

1− a

(
1− a lim

x→∞
e(u−1)xeivx

)
,

from which we see that the sum will be finite so long as lim
x→∞

e(u−1)x = 0,

which happens when u < 1 i.e., when Re [a] < 1.



Cesàro Summability

Using Cesàro summation, we see

lim
n→∞

∑n
k=0

1−ak+1

1−a

n+ 1
=

1

1− a
lim
n→∞

1

n+ 1

n∑
k=0

1− ak+1

=
1

1− a

(
1− lim

n→∞

1

n+ 1

n∑
k=0

ak+1

)
.

Note that
∑n

k=0 a
k+1 is a geometric series, and there are some details that

need to be discussed in order to conclude the convergence of it. Hence,we
see that this sum will converge if |a| ≤ 1 and a 6= 1. So the convergence
of the whole expression above will be convergent if |a| ≤ 1 and a 6= 1.

Abel Summability

Using Abel summation, we see

lim
r→1−

lim
n→∞

∑
k=0

akrk = lim
r→1−

∑
n

anrn

= lim
r→1−

∑
n

(ar)n

For a > 1, and for r that approches 1 from the lower side, we can observe
that we cannot have ar > 1. Since the above series is a geometric series,
we can conclude that in this case, i.e., ar > 1, the sum is divergent.
It will converge as long as |ra| ≤ 1 , which is going to happen when
|a| = 1 and r < 1. The sum will converge to limr→1−

1
1−ar . Hence, as long

as a 6= 1, we have convergece of the series.
�

(c) Do you get anything useful from the Borel summation of a Fourier series?

Proof. See remarks.
�



2. Let A(T) denote the space of integrable functions whose Fourier coefficients
are absolutely convergent. That is, f ∈ A(T) if∑

n∈Z

∣∣∣f̂(n)
∣∣∣ <∞.

(a) If f ∈ A(T), show that f ∈ C(T). Also show that f ∈ A(T) if and only
if f = g ∗ h for some functions g, h ∈ L2(T).

Proof. Recall that we showed in Homework 1 that f ∗ g ∈ C(T) for
f, g ∈ L2(T). Then we need only show that if f ∈ A(T), then f = g ∗ h
for g, h ∈ L2(T). So, let f ∈ A(T). Then∑

n∈Z

∣∣∣f̂(n)
∣∣∣ <∞.

Define the functions

g(z) =
1

2π

∑
n∈Z

√
|f̂(n)|e−inz and

h(z) =
∑
n∈Z

√
|f̂(n)|e−inzei arg z.

Then these functions are in L2(T) since the coefficients of f are absolutely
convergent.
Now,

g ∗ h =

∫
T
g(z − w)h(w) dw

=

∫
T

1

2π

∑
n∈Z

√
|f̂(n)|e−in(z−w)

∑
m∈Z

√
|f̂(m)|e−imwei arg z dw

=
1

2π

∫
T

∑
n∈Z

|f̂(n)|e−in(z−w)e−inwei arg z dw

=
1

2π

∫
T

∑
n∈Z

|f̂(n)|ei arg ze−inz dw

=
1

2π

∑
n∈Z

f̂(n)e−inz
∫
T
dw

=
∑
n∈Z

f̂(n)e−inz

= f(z)

Now, suppose that f = g ∗ h for g, h ∈ L2(T). Then f̂(n) = ĝ(n)ĥ(n).



So,

1√
2π

∑
n∈Z

|f̂(n)| =
∑
n∈Z

|ĝ(n)ĥ(n)|

=
∑
n∈Z

|ĝ(n)| |ĥ(n)|

=
〈
|ĝ(n)|, |ĥ(n)|

〉
≤ ‖|ĝ(n)|‖2‖|ĥ(n)|‖2 <∞.

�

(b) If f, g ∈ A(T), show that fg ∈ A(T) and express f̂ g in terms of f̂ , ĝ.

Proof.

f̂ g(n) =
1

2π

∫
T
f(x)g(x)e−inx dx

=
1

2π

∫
T

∑
k∈Z

f̂(k)eikx
∑
m∈Z

ĝ(m)eimxe−inx dx

=
1

2π

∫
T

∑
k,m

f̂(k)ĝ(m)ei(k+m)xe−inx dx

=
1

2π

∑
k,m

f̂(k)ĝ(m)

∫
T
ei(k+m−n)x dx

=
1

2π

∑
k+m−n=0

f̂(k)ĝ(m).

Note: We used the Lebesgue’s Dominated Convergence Theorem, in or-
der to switch the integral ans the sum.
Now, what remais to prove is that they are absolutely summable. For
this let’s takethe sum over all n, and get:

1

2π

∑
n∈Z

∑
k+m−n=0

|f̂(k)ĝ(m)| = 1

2π

∑
n∈Z

∑
k∈Z

|f̂(k)ĝ(n− k)|
∑
n∈Z

|f̂(n)|
∑
k∈Z

|ĝ(k)| <∞.

�

(c) Give an example of a function f ∈ C(T) such that f 6∈ A(T).

Proof.

�



3. Let D = {z ∈ C : |z| < 1} denote the unit disc in the complex plane. The
Hardy space H2(D) is the space of functions with a power series expansion

F (z) =
∞∑
n=0

cnz
n(0.1)

such that
∞∑
n=0

|cn|2 <∞.(0.2)

This is a Hilbert space with inner product〈
∞∑
n=0

anz
n,

∞∑
n=0

bnz
n

〉
=
∞∑
n=0

anbn.

(a) If (0.1) holds, show that the power series (0.2) converges in D to a holo-
morphic function F : D→ C.

Proof. Since
∞∑
n=0

|cn|2 <∞,

then there exists an N ∈ N∗ such that for all the n > N , cn ≤ 1.
Let ε > 0 be given. Consider

F (1− ε) =
∞∑
n=0

cn(1− ε)n.

Then note that

|F (1− ε)| ≤
∞∑
n=0

|cn|(1− ε)n

=
N∑
n=0

|cn|(1− ε)n +
∞∑

n=N+1

|cn|(1− ε)n

≤
N∑
n=0

|cn|(1− ε)n +
∞∑

n=N+1

(1− ε)n

≤ ∞.

Since F at (1 − ε) can be represented by a powers series centered at 0,
then we get that F is analytic on the ball centered at 0 and of radius
(1− ε) i.e., B1−ε(0). Since the ε > 0 was arbitrarly choosen, we conclude
that F is analytic on D.

�

(b) Is
1

1− z
∈ H2(D)? If θ0 ∈ T, give an example of a function F ∈ H2(D)

which does not extend to a function that is analytic at z = eiθ0 .



Proof. Note that

1

1− z
=
∞∑
n=0

zn

and

∞∑
n=0

1 =∞,

so

1

1− z
6∈ H2(D).

Note that taking the integral of

1

1− z
=
∞∑
n=0

zn

gives us

− log(1− z) =
∞∑
n=0

zn+1

n+ 1
.

So this gives us a function in H2(D) which is not analytic at z = 1.
From this, we see that for any θ0 ∈ T the function − log(θ0 − z) doesn’t
extend to an analytic function.

�

(c) If F ∈ H2(D), show that

‖F‖2H2 := sup
0<r<1

1

2π

∫ 2π

0

|F (reiθ)|2 dθ <∞.

Show conversely that if F : D → C is a holomorphic function such that
‖F‖2H2 <∞ then F ∈ H2(D).

Proof. Due to Tim.



sup
0<r<1

1

2π

∫ 2π

0

|F (reiθ)|2 dθ = sup
0<r<1

1

2π

∫ 2π

0

∣∣∣∣∣
∞∑
n=0

rneinθcn

∣∣∣∣∣
2

dθ

= sup
0<r<1

1

2π

∫ 2π

0

∣∣∣∣∣
∞∑
n=0

rneinθcn

∣∣∣∣∣
∣∣∣∣∣
∞∑
n=0

rne−inθcn

∣∣∣∣∣ dθ
= sup

0<r<1

1

2π

∫
T

( ∑
m,n∈Z

rn+mcmcne
i(m−n)θ

)
dθ

= sup
0<r<1

1

2π

∑
m,n

2πδm,ncmcnr
n+m

= sup
0<r<1

∑
n∈Z

|cn|2r2n

=
∑
n∈Z

|cn|2

= 〈F, F 〉.

Note that since holomorphic functions have power series expansions, the
above calculation also establishes the converse. �

(d) Let

H̃2(T) :=
{
f ∈ L2(T) : f̂(n) = 0 for n < 0

}
.

If F ∈ H2(D) is given by (1) and 0 < r < 1, define fr ∈ L2(T) by

fr(θ) = F (reiθ).

Show that fr → f as r → 1− in L2(T) where

f(θ) =
∞∑
n=0

cne
inθ ∈ H̃2(T).

Conversely, if f ∈ H̃2(T), define F : D→ C by

F (reiθ) = (Pr ∗ f)(θ)

where Pr is the Poisson kernel. Show that F ∈ H2(T).



Proof. Due to Tim.

Pr ∗ f(x) =

∫
Pr(x− y)f(y) dy

=
1

2π

∫ ∑
n∈Z

r|n|ein(x−y)
∞∑
n=0

cne
iny dy

=
1

2π

∫ ∑
n∈Z
m≥0

r|n|ein(x−y)cme
imy dy

=
1

2π

∫ ∑
n∈Z
m≥0

r|n|ein(x−y)+imycm dy

=
∑
n≥0

rneinycn dy

= fr(x).

Then, since Pr is an approximate identity, we must have that fr → f . �


