201B, Winter ’11, Professor John Hunter
Homework 3 Solutions
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1. Suppose that ) ¢, is a series of complex numbers with partial sums
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The series is Borel summable with Borel sum s if the following limit exists:
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(a) If the series > ¢, = s is convergent, show that it is Borel summable with
n=0
Borel sum equal to s, i.e. Borel summation is regular.

Proof. Let € > 0 be given. Choose N such that |s, — s| < e for n > N.

Now,
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The reaon why the first term went away is because Zi:]:o s"n—’f" is just a

constatnt, and when we multiply it by e~ and then take the limit as
T — 00, we get zero.
So, now we have that
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Then, since our choice of € was arbitrary, we must have that Borel sum-
mation is regular.
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For what complex numbers a € C is the geometric series
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an

n=0
Borel summable? What is its Borel sum? For what a € C is this series
Cesaro summable? Abel summable?

Proof. See remarks.
Borel Summability

By part a), we know that this sum will converge if |a| < 1, and from part

a) we know that the limit is
Note that if ¢ = 1 we have
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Now, suppose a # 1 and therfore we can write a in its general form

a =u+ . Then s, = 1_1‘1":1.
So,
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from which we see that the sum will be finite so long as lim e®~1* =0,

T—00

which happens when u < 1 i.e., when Re[a] < 1.



Cesaro Summability

Using Cesaro summation, we see
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Note that Y, _, a"™ is a geometric series, and there are some details that
need to be discussed in order to conclude the convergence of it. Hence,we
see that this sum will converge if |a| < 1 and a # 1. So the convergence
of the whole expression above will be convergent if |a| < 1 and a # 1.

Abel Summability

Using Abel summation, we see
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For a > 1, and for r that approches 1 from the lower side, we can observe
that we cannot have ar > 1. Since the above series is a geometric series,
we can conclude that in this case, i.e., ar > 1, the sum is divergent.

It will converge as long as |ra| < 1, which is going to happen when
la| =1 and r < 1. The sum will converge to lim, ;- ﬁ Hence, as long
as a # 1, we have convergece of the series.
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Do you get anything useful from the Borel summation of a Fourier series?

Proof. See remarks.
O



2. Let A(T) denote the space of integrable functions whose Fourier coefficients
are absolutely convergent. That is, f € A(T) if

Z ‘f(n)‘ < 0.
neZ
(a) If f € A(T), show that f € C(T). Also show that f € A(T) if and only
if f = g h for some functions g, h € L*(T).

Proof. Recall that we showed in Homework 1 that f xg € C(T) for
f,g9 € L*(T). Then we need only show that if f € A(T), then f =g=x*h
for g,h € L*(T). So, let f € A(T). Then
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Define the functions
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Then these functions are in L?(T) since the coefficients of f are absolutely
convergent.
Now,
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Now, suppose that f = g h for g,h € L*(T). Then f(n) = f](n)ﬁ(n)
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If f,g € A(T), show that fg € A(T) and express fg in terms of f,§.
Proof.
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Note: We used the Lebesgue’s Dominated Convergence Theorem, in or-
der to switch the integral ans the sum.

Now, what remais to prove is that they are absolutely summable. For
this let’s takethe sum over all n, and get:
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Give an example of a function f € C(T) such that f ¢ A(T).
Proof.



(0.1)

(0.2)

3. Let D = {z € C: |z|] < 1} denote the unit disc in the complex plane. The

Hardy space H?(D) is the space of functions with a power series expansion
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This is a Hilbert space with inner product
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(a) If (0.1) holds, show that the power series (0.2) converges in D to a holo-
morphic function F : D — C.

Proof. Since
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then there exists an N € N* such that for all the n > N, ¢, < 1.
Let € > 0 be given. Consider
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Then note that
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Since F at (1 — ¢) can be represented by a powers series centered at 0,
then we get that F' is analytic on the ball centered at 0 and of radius
(1 —¢)ie., B1_-(0). Since the € > 0 was arbitrarly choosen, we conclude
that F'is analytic on D.

O

€ H*(D)? If 6, € T, give an example of a function F € H*(D)

160

1

b) Is
(b) Is —
which does not extend to a function that is analytic at z = e



Proof. Note that
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Note that taking the integral of
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So this gives us a function in H?(ID) which is not analytic at z = 1.
From this, we see that for any 6, € T the function —log(dy — z) doesn’t

extend to an analytic function.
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If F € H*(D), show that

1 2m )
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Show conversely that if F': D — C is a holomorphic function such that
| F||%: < oo then F' € H?*(D).

Proof. Due to Tim.
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Note that since holomorphic functions have power series expansions, the
above calculation also establishes the converse. U

(d) Let
H(T) = {f € LA(T) : f(n) =0 for n < 0} .
If F e H2(D) is given by (1) and 0 < r < 1, define f, € L*(T) by
fr(0) = F(re”).

Show that f. — f asr — 17 in L*(T) where

f(0) = icneme e H*(T).
n=0

Conversely, if f € H*(T), define F: D — C by
F(re”) = (P = f)(0)

where P, is the Poisson kernel. Show that F' € H?*(T).



Proof. Due to Tim.
P, x f(x) = /Pr(x —y)f(y)dy

- % / Z rlnlgin(@—y) i c,e™ dy

neL n=0

1 . .
e 2— / Z r‘nleln(x_y)cmelmy dy
m

neEL
m>0

1 . 4

nel
m>0

=S e, dy

n>0
= fr(z).

Then, since P, is an approximate identity, we must have that f, — f. [



