
201B, Winter ’11, Professor John Hunter
Homework 4 Solutions

1. Let D ∈ R2 be the unit disc and f ∈ C(∂D) a continuous function defined on
the unit circle ∂D. Suppose that u : D → R is a function u ∈ C2∩C(D) such
that {

∆u = 0 in D
u = f on ∂D

(a) Show that

max
D

u = max
∂D

f.

Proof. a) This part is in fact a theorem often used in PDE’s called the
”Weak Maximal Principle”. There are at least two ways of proving this
result, but I will write up the one that uses the hint already given to
us. The other way of proving it, is by using the Mean Value Property
Theorem.
Consider the function

uε(x, y) = u(x, y) + ε(x2 + y2).

Applying the differential operator, 4, we get that

4uε(x, y) = 4u(x, y) + ε4(x2 + y2) = 4ε > 0.

Here, I used the fact that u is harmonic on the unit disk D, and therefore
the 4u = 0. Hence, if uε attains a maximum at an interior point of D
then 4uε needs to be less or equal to zero–it is not much more than the
second order derivative test that we need to be satisfied in order to have
a maximum. But, 4uε = 4ε ≥ 0, and thus uε has no interior maximum
and it attains its maximum on the boundary.
If x2 + y2 < 1, then

sup
D
u ≤ sup

D
uε ≤ sup

∂D
uε ≤ sup

∂D
u+ ε.

Letting ε→ 0, we get the desired result.
�

(b) Deduce that a solution of given problem is unique and is therefore given
by

u(r, θ) = (Pr ∗ f)(θ)

in 0 ≤ r < 1 where Pr is the Poisson kernel.
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Proof. b)

• Uniqueness

Assume that we have two solutions, u1 and u2, satisfying the Dirichlet
boundary problem then

4u1 = 0 in D
4u2 = 0 in D
u1 = f on ∂D
u2 = f on ∂D

Substracting the we get first that
4(u1 − u2) = 0 in D
4(u2 − u1) = 0 in D
u1 − u2 = 0 on ∂D
u2 − u1 = 0 on ∂D

which, by part a of the problem, tell you that since u1−u2 is harmonic in
D, then the maximum value of u1 − u2 in D must occur at the boundary
of D–by the maximal principle. But 0 is the only value of u1 − u2 on the
boundary, so the maximum of u1 − u2 in D must be 0, i.e., u1 − u2 ≤ 0 .
The same kind of logic we use for the u2−u1 and we get that u2−u1 ≤ 0.
Putting together what we got, we have that in order for the last two
inequalities to hold in the same time we need u1 − u2 = 0, which trans-
lates to u1 = u2 in D. Therefore, solutions to the Dirichlet problem with
continuous boundary data are unique.

• Separation of variable to find solutions

We can solve the Dirichlet problem on a disk in the plane, using separation
of variables. Let D = {(x, y) ∈ R2 |x2 + y2 < 1} be the unit disk. It will
actually be more convenient to work in polar coordinates (r, θ). In polar
coordinates, the unit disk is given by

D = {(r, θ) | 0 ≤ r ≤ 1 and 0 ≤ θ < 2π} .

Notice that every point in the disk has a unique representation (r, θ) as
defined above, except for the origin which can be written as (0, θ) for any
choice of angle 0 ≤ θ < 2π.

Suppose that u(r, θ) = R(r)Θ(θ) is a harmonic function in D-this method
is called separation of variable for PDE’s. We want to find ODEs that R
and Θ satisfy. Since u is harmonic, 4u = uxx+uyy = 0. But this form of
Laplaces equation is not helpful, since it consists derivatives with respect
to x and y, while we want derivatives with respect to r and θ. Hence we
must change of variables.



Recall that x = r cos(θ), y = r sin(θ), r =
√
x2 + y2 and θ = tan1(x

y
).

Then

∂xr =
x

r
= cos(θ),

∂yr =
x

r
= sin(θ),

∂xθ =
y

r2
=

1

r
sin(θ)

and ∂yθ = x
r2

= 1
r

cos(θ).

By the chain rule, it follows that

ux = ur cos(θ)uθ
sin(θ)

r
,

uxx =

(
urr cos(θ)urθ

sin(θ)

r

)
cos(θ) + ur

sin2(θ)

r

−
(
uθr cos(θ)uθθ

sin(θ)

r

)
sin(θ)

r
+ 2uθ

cos(θ) sin(θ)

r2

and

uy = ur sin(θ) + uθ
cos(θ)

r
,

uyy =

(
urr sin(θ) + urθ

cos(θ)

r

)
sin(θ) + ur

cos2(θ)

r

+

(
uθr sin(θ)uθθ

cos(θ)

r

)
cos(θ)

r
− 2uθ

cos(θ) sin(θ)

r2
.

Adding the formulas we found for uxx and uyy and simplifying the ex-
pression we get:

uxx + uyy =urr(sin
2(θ) + cos2(θ)) + ur(

sin2(θ)

r

+
cos2(θ)

r
) + uθθ(

sin2(θ)

r2
+

cos2(θ)

r2
).

Thus the Laplacian in polar coordinates is given by:

4u = urr + r1−ur + r−2uθθ.

If u(r, θ) = R(r)Θ(θ) is harmonic, then Laplace’s equation in polar coor-
dinates, after plugging in the expression of u gives us:

R
′′
Θ + r−1R

′
Θ + r−2RΘ

′′
= 0.

Rewriting the above equation, we get the folllwing system of ODE’s:

r2
R

′′

R
+ r

R
′

R
= −Θ

′′

Θ
.



Therefore since the LHS only depends on the variable r and the RHS
only depends on the variable θ, both sides must be equal to a constant,
for example λ:

r2
R

′′

R
+ r

R
′

R
= −Θ

′′

Θ
= λ.

Hence, we end up with the following ODE’s that we need to solve:

r2R
′′

+ rR
′ − λR = 0 and Θ

′′
+ λΘ = 0.

I will start solving the first easy ODE, namely Θ
′′

+ λΘ = 0.. One of the
things that we need to look for is the periodic solutions of period 2πof
this ODE. Thus we only need to find the solutions Θ(θ) of the differential
equation Θ

′′
+ λΘ = 0 which have period 2π.

There are three cases.

CASE I. Suppose that λ = µ2 << 0. Then we know Θ(θ) = c1e
µθ +

c2e
−µθ. This function can be periodic only if c1 = c2 = 0. In this case

Θ(θ)0 and hence u ≡ 0. This case is not interesting.

CASE II. Suppose that λ = 0. Then Θ(θ) = c1 + c2θ, which is periodic
only if c2 = 0. Hence Θ(θ) = c1 is constant. When λ = 0, the differential
equation for R becomes r2R

′′
+ rR

′
= 0. Thus R(r) = k1 + k2 log r is the

general solution of r2R
′′

+rR
′
= 0. But since we want u to be real-valued

(finite) at the origin, we cannot allow R(r) to have a log r term, i.e. we
need k2 = 0. Therefore, u(r, θ) = R(r)Θ(θ) = k1c1 is a constant function
when λ = 0.

CASE III. Suppose that λ = µ2 > 0. Then Θ(θ) = c1 cos(µθ)+c2 sin(µθ)
and R(r) = k1r

µ + k2r
µ. In order for Θ to be periodic of period 2π, we

need µ = n to be a positive integer. In order for u to be real-valued at
the origin, we cannot allow R(r) to have a rµ term, i.e. we must take
k2 = 0. Therefore, u(r, θ) = R(r)Θ(θ) = k1r

n(c1 cos(nθ) + c2 sin(nθ) for
some positive integer n, when λ > 0.

Therefore all harmonic functions in the disk of the form u(r, θ) = R(r)Θ(θ)
are either constant or u(r, ) = rn(c1 cos(nθ) + c2 sin(nθ))for some positive
integer n. These are the fundamental solutions of Laplaces equation in
the unit disk.

• Now lets return to solving the Dirichlet problem on the unit disk. Let
f(θ) be a continuous function defined on ∂D = {(1, θ) : 0 ≤ θ < 2π} .
We want to solve the BVP{

4u = 0 in D
u = f on ∂D



Following the same approch as probably you saw in the 1D heat equation
case or in 1D wave equation case, we can try to find u which is a (infinite)
linear combination of fundamental solutions of Laplaces equation. Let

u(r, θ) =
a0
2

+
∞∑
n=1

rn(an cos(nθ) + bn sin(nθ)).

Then u is harmonic in D. Then u(r, θ) is a harmonic extension of f(θ) to
D provided that

(0.1) u(1, θ) =
a0
2

+
∞∑
n=1

(an cos(nθ) + bn sin(nθ)) = f(θ).

Thus we can solve the Dirichlet problem in the unit disk with boundary
data f provided that f(θ) has a Fourier series expansion with L = π.
Summarizing what we did so far, we conclude that the solution of the
Dirichlet boundary problem is given by the (0.1), where,

an =
1

π

∫ 2π

0

f(t) cos(nt) dt and bn =
1

π

∫ 2π

0

f(t) sin(nt) dt.

It is now possible to say that we have solved the Dirichlet problem on the
unit disk, but if we work a little bit more, we can find diffrent solution
from the ones we just found. This extra work will involve complex num-
bers, but nothing more than Eulers formula einθ = cos(nθ) + i sin(nθ).
For each integer n (positive, zero or negative), define a new coefficient cn
by

cn =
1

2π

∫ 2π

0

f(t) (cos(nt)− i sin(nt)) dt =
1

2π

∫ 2π

0

f(t)e−int dt

Then we can relate the coefficients cn to the coefficients an and bn by

a0 = 2c0 , an = cn + c−n and bn = i(cn − c−n) for all n ≥ 1.



Now we can rewrite the Fourier series for f in terms of cn,

f(θ) =
a0
2

+
∞∑
n=1

(an cos(nθ) + bn sin(nθ))

= c0 +
∞∑
n=1

((cn + c−n) cos(nθ) + i(cn − c−n) sin(nθ))

= c0 +
∞∑
n=1

(
cne

inθ + c−ne
−inθ)

= c0 +
∞∑
n=1

cne
inθ +

−1∑
n=−∞

cne
inθ

=
∞∑

n=−∞

cne
inθ.

In the last line the infinite sum ranges over all integers n (positive, zero
and negative).
Similarly

u(r, θ) =
∞∑

n=−∞

cnr
|n|einθ

where

cn =
1

2π

∫ 2π

0

f(t)e−int dt.

We can check that indeed the boundary condition is satisfied. Next we
define and examine the function

P (r, θ) =
∞∑

n=−∞

r|n|einθ

First observe that we can rewrite P (r, θ) as two geometric series:

P (r, θ) =
∞∑
n=0

(
reiθ
)n

+
∞∑
n=1

(
re−iθ

)n
.

Since |reiθ| = r < 1 and |re−iθ| = r < 1 these series converge and

P (r, θ) =
1

1− reiθ
+

1

1− re−iθ
− 1

=
1− r2

1− r(eiθ + e−iθ) + r2

=
1− r2

1− 2r cos(θ) + r2
.

Hence, by the convolution theorem (7.28)−HN we proved what we were
asked to prove. �



2. Define f ∈ L2(T) by

f(x) = |x| for |x| < π.

Show that f ∈ H1(T) and compute its weak derivative f ′ ∈ L2(T). Is
f ′ ∈ H1(T)? For what values of s > 0 is it true that f ∈ Hs(T)?

Proof. • To show that f ∈ H1(T) we need to use the definition what it means
for a function to belong to H1(T). For this we use the Fourier coefficients of
f that we computed in Homework 1,

f̂(n) =
2

πn2
((−1)n − 1).

Hence, computing the norm of f , we get∑
n∈Z

n2|f̂ |2 =
∑

n=odd, n∈Z

n2 8

π2n4

=
∑

n=odd, n∈Z

8

π2n2
<∞

since that is just a constant multiplied with a p-series with p = 2.
Hence, we conclude f ∈ H1(T).

• We compute the weak derivative of f . The weak derivative f ′ is this
unique element of L2(T) that by the definition satisfies∫

T
f ′ϕdx = −

∫
T
fϕ′dx

for all ϕ ∈ C1(T). Let’s compute the weak derivative of f :

−
∫ π

−π
|x|ϕ′(x) dx = −

∫ π

0

xϕ′(x) dx+

∫ 0

−π
xϕ′(x) dx

= −xϕ(x)
∣∣∣π
0

+

∫ π

0

ϕ(x) dx+ xϕ(x)
∣∣∣0
−π
−
∫ 0

−π
ϕ(x) dx

= −πϕ(π) + πϕ(−π) +

∫ π

−π
sgn(x)ϕ(x) dx

=

∫ π

−π
sgn(x)ϕ(x) dx.

We conclude that sgn(x) is the weak derivative of f(x) = |x|.



• Now we want to see if f ′ is an element of the space H1(T). Look at the
following sum: ∑

n∈Z

n2|f̂ ′(n)|2 =
∑
n∈Z

n2n2|f̂(n)|2

=
∑

n=odd, n∈Z

8n2

π2n2

=∞.

We can conclude that f
′

is not an element of H1(T).

• To answer to the last question we see from our previous work that in order

to have
∑

Z n
2s|f̂(n)|2 < ∞, i.e., convergent, we need

∑
n∈Z

1

n4−2s < ∞ which,

by the p-series test, implies 4− 2s > 1 or equivalently s < 3
2
.

�

3. Suppose that f : [0, L]→ R is a smooth function, i.e. f ∈ C1([0, L]) such that
f(0) = f(L) = 0. Prove that∫ L

0

|f(x)|2dx ≤
(
L

π

)2 ∫ L

0

[f ′(x)]2 dx.

Show that the constant in this inequality is sharp. Why do you need to
assume that f(0) = f(L) = 0? Show that you cannot estimate the L2-norm
of a smooth, square-integrable function f : [0,∞)→ R such that f(0) = 0 in
terms of the L2 norm of its derivative.

Proof. I will write a slightly different proof than the one I gave in the dis-
cussion section, because it will be more obvious why we need to assume that
f(0) = f(L) = 0.

• Let define ψ̃ : [0, 2π]→ C as follows:

ψ̃(x) = f

(
L

π
x

)
.

The odd extension of ψ̃, which we are going to denore by ψ, is given by

ψ(x) =

{
ψ̃(x) x ∈ [0, π]

−ψ̃(−x) x ∈ [−π, 0]

Note that indeed this is an odd function and moreover the the following
holds ψ(0) = ψ(2π) = 0. Also this odd extension we have just created is a
continous differentiable function on [−π, π].



The fact that ψ ∈ C
′
([−π, π]) together with the information that ψ is odd

(this is how we constructed it), we get that it can be approximated with the
following Fourier series:

ψ(x) ∼
∞∑
n=1

ψ̂n sin(nx),

with ψ̂n real numbers.
Note, that

‖ψ‖2L2(T) =

∫ π

−π
| ψ(x) |2 dx

=2

∫ π

0

| ψ̃(x) |2 dx

=2

∫ L

0

| f 2(y)(
π

L
) | dy

=
2π

L
‖f‖2L2(T),

and that

‖ψ′‖2L2(T) =

∫ π

−π
| ψ′

(x) |2 dx

=2

∫ π

0

| ψ̃′
(x) |2 dx

=2

∫ L

0

| (f 2(
xL

π
))

′
(
L

π
)2 | dx

=2(
L

π
)2
∫ L

0

|f ′
(y)

π

L
| dy

=
2L

π
‖f ′‖2L2(T).

By Perceval’s identity , we can see that for n ≥ 1, we get

‖ψ‖2L2(T) =
∞∑
n=1

(ψ̂n)2 ≤
∞∑
n=1

n2(ψ̂n)2 = ‖ψ′‖2L2(T),

which implies that

‖ψ‖2L2(T) ≤ ‖ψ
′‖2L2(T).

But this last inequality implies, if we go back to our original inequality, that

2π

L
‖f‖2L2([0,1]) ≤

2L

π
‖f ′‖2L2([0,1]).

Simplifying by 2 we get that indeed

‖f‖2L2([0,1]) ≤
(
L

π

)2

‖f ′‖2L2([0,1]).



• The inequality is sharp and this can be seen if we manage to find a function
for wich we can get an equality. A good and easy example is f(x) = sin

(
xπ
L

)
. Obviously f is in C1([0, 1]) and satisfies f(0) = f(1) = 0. Pluggin in in the
inequality we where given to prove we see that indeed we get that

‖f‖2L2([0,1]) =

(
L

π

)2

‖f ′‖2L2([0,1]).

• To answer to the part where we are asked to show why is it important that
f should satisfy f(0) = f(1) = 0, we should realize that one major step of
the proof was to construct the odd extension, and not just the construction
itself was important, but the fact that that construction provided us with a
C1 function that has a convergent series.

• To show that you cannot estimate the L2-norm of a smooth, square-
integrable function f : [0,∞)→ R such that f(0) = 0 in terms of the L2 norm
of its derivative look at the following example of a smooth, square integrable
function :

f(x) = e−xx2 sin

(
1

x2

)
.

Notice that f(0) = 0, but the L2-norm of it blows up . �

4. Suppose that u(x, t) is a solution of the following initial value problem for the
heat equation

ut = uxx x ∈ T, t > 0

u(x, 0) = f(x) x ∈ T
where f ∈ C(T) and

u ∈ C2(T× (0,∞)) ∩ C(T× [0,∞)).

(a) Show that

u(x, t) = (θt ∗ f)(x) for t > 0

where

θt(x) =
1

2π

∑
n∈Z

e−n
2teinx.

(b) Show that u ∈ C∞(T× (0,∞)).

Proof. The solution of this problem can be found in Professor Hunter’s book
on page 161. Please read it carefully and make sure you understand it. �


