
201B, Winter ’11, Professor John Hunter
Homework 5 Solutions

1. Let Td = T× T× · · · × T denote the d-dimensional Torus.

(a) Show that B =
{
ei
−→n ·−→x : −→n ∈ Zd

}
is an orthogonal set in L2(Td) and give an

expression for the Fourier coefficients f̂(−→n ) of a function

f(−→x ) =
∑
−→n∈Zd

f̂(−→n )ei
−→n ·−→x ∈ L2(Td).

(You can assume that B is complete — the proof is similar to the one-dimensional
case e.g. use an approximate identity

Φn(−→x ) = φn(x1)φn(x2) . . . φn(xd) n ∈ N

that is a product of one-dimensional approximate identities {φn} consisting of trigono-
metric polynomials.)

Proof. part (a) from Eric’s .tex file
Suppose n 6= m, then nj 6= mj for some 1 ≤ j ≤ d and we have (Fubini theorem
allows to change the order of integration)

〈ein·x, eim·x〉 =

∫
Td

ein·xe−im·xdx

=

∫
T
· · ·
∫

T
ein1x1 · · · eindxde−im1x1 · · · e−imdxddx1 · · · dxd

=

∫
T
ein1x1e−im1x1 · · ·

∫
T
einjxje−imjxj · · ·

∫
T
eindxde−imdxddx1 · · · dxd

= 0.

So, our Fourier coefficients can be expressed as simply

〈ein·x, f(x)〉
(2π)d

�

(b) For s > 0, let Hs(Td) denote the space of functions f ∈ L2(Td) such that∑
−→n∈Zd

(
1 + |−→n |2s

) ∣∣∣f̂(−→n )
∣∣∣2 <∞.

Prove that if s > d/2 and f ∈ Hs(Td), then f ∈ C(Td).

Proof. We want to find the conditions that will assure us that the Fourier coefficients
of f are absolutely summable. Then using a previous homework, in which we showed
that absolute summability implies continuity i.e, if f ∈ A(T) implies that f ∈ C(Td),
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we will be done. .
By the Cauchy-Schwarz Inequality, we have∑

n∈Zd

∣∣∣f̂(n)
∣∣∣ =

∑
n∈Zd

1

(1 + |n|2s)1/2
(1 + |n|2s)1/2

∣∣∣f̂(n)
∣∣∣2

≤

(∑
n∈Zd

1

(1 + |n|2s)

)1/2(∑
n∈Zd

(1 + |n|2s)
∣∣∣f̂(n)

∣∣∣2)1/2

= ||f ||Hs

(∑
n∈Zd

1

(1 + |n|2s)

)1/2

We have that ‖f‖Hs is bounded since we know that f ∈ Hs. The convergence of the
last series can be shown using the Integral Test. Note that we have a radial integral.
Let Sd denote the d-dimensional surface area of the unit sphere. Using spherical
coordinates (to get an idea how it works, try d = 2 or d = 3 and then by induction
you can deduce the general case) we get:∫

Td

1

(1 + |x|2s)
dx = Sd · d

∫ ∞
0

rd−1

1 + r2s
dr.

Note: do not forget about multiplying with the Jacobian of the transformation! That
is why we got that rd−1 under the integral. We conclude that the integral converges
for 2s− (d− 1) < 1 or s > d/2. �

2. (a) Show that any test function φ ∈ C∞(T) can be written as φ = c+ ψ′ where

c =
1

2π

∫
φ dx, ψ ∈ C∞(T).

Proof. Let consider

ψ(x) =

∫ x

0

φ(t)dt− cx.

Then it is easy to check that ψ(0) = 0 and ψ(2π) =

∫ 2π

0

φ(t)dt− 2πc = 0. Therefore

you can see that ψ ∈ C∞(T). Note that by the Fundamental Theorem of Calculus

ψ′(x) = φ(x)− c.
Hence, we are done.

�

(b) Suppose that f ∈ L1(T) is weakly differentiable and its weak derivative f ′ = 0
is zero. Prove that f = constant (up to pointwise a.e. equivalence).

Proof. For this part I am going to give two solutions, ones that is more general, mean-
ing that it works on more general spaces, and one that works just for this particular
problem.



First proof. We begin by writing what mens that f ∈ L1(T) is weakly differ-
entiable and its weak derivative f ′ = 0 is zero. this means that for any function
ψ ∈ C∞(T) we have ∫

T
f

′
ψ dx = −

∫
T
fψ

′
dx = 0.

Hence ∫
T
fψ

′
dx = 0.

Now, using part (a), we can substitute ψ
′
(x) by φ(x)− c we have

0 =

∫
T
fψ

′
dx =

∫
T
f(φ(x)− c) dx

=

∫
T
f(x)φ(x) dx− c

∫
T
f(x) dx

=

∫
T
f(x)φ(x) dx−

∫
T
φ(y) dy

∫
T
f(x) dx.

Rewriting the equation above and denoting Af =

∫
T
f(x) dx, we get

0 =

∫
T
f(x)φ(x) dx−

∫
T
φ(x) dx

∫
T
f(y) dy

=

∫
T
f(x)φ(x) dx− Af

∫
T
φ(x) dx

=

∫
T
φ(x)(f − Af ) dx

The equality above holds for any φ ∈ C∞(T). therefore we can conclude that f = Af
almost everywhere.

Second proof. David’s proof

Suppose n 6= 0 and let φ(x) = −e
−inx

in
. Then φ′(x) = e−inx and applying integration

by parts shows us that

0 =

∫
T
f ′(x)φ(x)dx = −

∫
T
f(x)φ′(x)dx = −

∫
T
f(x)e−inxdx = −2πf̂(n).

Thus, f̂(n) = 0 for all n 6= 0, which necessitates that f is pointwise a.e. equivalent

to the constant function g = f̂(0).
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3. Define the principal-value functional T : D(T)→ C by

〈T, φ〉 = p.v.

∫
T

cot
(x

2

)
φ(x) dx

= lim
ε→0+

(∫ −ε
−π

+

∫ π

ε

)
cot
(x

2

)
φ(x) dx.

(a) Show that T ∈ D′(T) is a well-defined periodic distribution.

Proof. First I will simplify the expression for 〈T, φ〉 to

〈T, φ〉 = lim
ε→0+

(∫ −ε
−π

+

∫ π

ε

)
cot
(x

2

)
φ(x)dx

= lim
ε→0+

(∫ ε

π

cot

(
−x
2

)
φ(−x)(−1) dx+

∫ π

ε

cot
(x

2

)
φ(x) dx

)
= lim

ε→0+

∫ π

ε

cot(
x

2
) [φ(x)− φ(−x)] dx

= lim
ε→0+

∫ π

ε

E([ε, π]) cot(
x

2
) [φ(x)− φ(−x)] dx.

Here is the point where you will need to switch the limit and the integral, but this
can be done just if you have some ”nice” properties. Recall that Lebesgue Monotone
Convergence Theorem takes care of such tricks”. Make sure you see why it can be
applied here. Having this said we can conclude that

〈T, φ〉 ≤
∫ π

0

cot(
x

2
) [φ(x)− φ(−x)] dx.

Observe that linearity is obvious by the linearity of integration. So, we need to show
that it is bounded and therefore continuous. We must check the behavior at 0 and π:

lim
x→0orπ

cot
x

2
(φ(x)− φ(−x)) = lim

x→0orπ

|φ(x)− φ(−x)|
tan(x

2
)

=2 lim
x→0orπ

φ
′
(x)− φ′

(−x)

sec2(x
2
)

=0.

Hence, the integrant is finite at the endpoints, and hence the integral is well defined.
Now, let’s prove that T is well defined periodic distribution, which means to prove
that T is continuous (or bounded if you wish). I prefer to prove the continuity in the
old fashion way.

〈T, φn〉 − 〈T, φn〉 =|〈T, φn − φ〉|

≤
∫ π

0

cot(
x

2
)|φn(x)− φ(x)− (φn(−x)− φ(−x))| dx

≤
∫ π

0

cot(
x

2
)(|φn(x)− φ(x)|+ |φn(−x)− φ(−x)|) dx.



But, we already proven that the RHS is finite, and hence we can use LMCD and
move the limit under the integral. We get that T is continous just by looking at the
following:

lim
n→∞
〈T, φn〉 − 〈T, φn〉 ≤

∫ π

0

cot(
x

2
) lim
n→∞

(|φn(x)− φ(x)|+ |φn(−x)− φ(−x)|) dx.

�

(b) Compute the Fourier coefficients T̂ (n) of T .

Proof. Recall that

T̂ (n) =
1

2π
〈T, e−inx〉.

Then,

2πT̂ (n) =

∫ π

0

cot
(x

2

) (
e−inx − einx

)
dx

= −2i

∫ π

0

cot
(x

2

)
sin(nx) dx

Computing the expression above, we get

T̂ (n) = −i
∫ π

0

cot
(x

2

)
sin(nx) dx.

Integrating, you will get:

T̂ (n) = −i sgn(n).

�

4. (a) If T ∈ D′(T) is a periodic distribution, show that there exists an integer k ≥ 0
and a constant C such that

(0.1) |〈T, φ〉| ≤ C ‖φ‖Ck for all φ ∈ D(T)

where

‖φ‖Ck =
k∑
j=0

sup
x∈T

∣∣φ(j)(x)
∣∣

denotes the Ck-norm of φ.

Proof. We will prove the assertion by contradiction. Assume that for all k and C
there exists φk,C ∈ D such that

|〈T, φk,C〉| > C||φk,C ||Ck

and if we let k = C, then we can rename φk,C ≡ φk. Observe that in this case we
have

|〈T, 1

k

φk
||φk||Ck

〉| > 1



Now, call ψk ≡ 1
k

φk

||φk||Ck
. For any j ≥ 0, we have

||ψ(j)
k ||∞ =

1

k

||φ(j)
k ||∞

||φk||Ck

=
1

k

||φ(j)
k ||∞∑k

i=0 supx∈T |φ(i)(x)|

≤ 1

k
for any k ≥ j.

Thus, as k →∞, ψk → 0, but |〈T, ψk〉| > 1. ⇒⇐ �
�

(b) The order of a distribution T is the minimal integer k ≥ 0 such that (0.1) holds.
What it the order of: (i) a regular distribution; (ii) the delta-function; (iii) the prin-
cipal value distribution in the previous question? Give an example of a distribution
of order 100.

Proof. Three parts:

(i) Let Tf be a regular distribution . Then

〈Tf , φ〉 =

∫
T
fφdx ≤ ||φ||∞

∫
T
|f |dx = ‖φ‖C0‖f‖L1

Hence the order of Tf is 0.

(ii) Let Tf be a delta distribution. We have

〈δ, φ〉 = φ(0).

Then

| 〈δ, φ〉 | = |φ(0)| ≤ sup
x∈T
|φ(x)|.

So, the delta distribution is 0 order.

(iii) We know that for all ε > 0 there is a δ > 0 such that x ∈ (0, δ) guarantees
| cot(x/2)(φ(x)− φ(−x))| < 4|φ′(0)|+ ε.
Therefore,

|〈T, φ〉| =

∣∣∣∣∫ δ

0

cot
x

2
(φ(x)− φ(−x))dx+

∫ π

δ

cot
x

2
(φ(x)− φ(−x))dx

∣∣∣∣
≤ 4|φ′(0)|+ ε+ ||φ||∞

∫ π

δ

∣∣∣cot
x

2

∣∣∣ dx
≤ C||φ||C1

We conclude it has order 1.



(iv) The example, is th following. Consider the 100-th derivative of the delta
distribution, which I will denote as δ(100). Then

|〈δ(100), φ〉| = |〈δ, φ(100)〉| = |φ(100)(0)| ≤ sup
x∈T
|φ(100)(0)| ≤ ‖φ‖C100 .

So the 100-th derivative of the delta function has order 100....there are some details
that need to be checked in order to conclude that indeed this is the order, and not
less. Please let me know if you have trouble proving rigorously that indeed the 100-th
derivative of the delta distribution has order 100.
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