
201B, Winter ’11, Professor John Hunter
Homework 6 Solutions

1. Let X be a (real or complex) linear space and P,Q : X → X projections.

(a) Show that I − P is the projection onto kerP along ranP .

Proof. To show that I −P is a projection we need to show that (I −P )2 = I −P . It
is easy to see that

(I − P )(x) = x− Px,
and therefore

(I − P )2(x) =(I − P )(x− Px)

=I(x− Px)− P (x− Px)

=x− Px− Px+ P 2(x)

=x− Px− Px+ Px

=x− Px
=(I − P )(x).

Note that we used that P is a projection, which by definition means in particular
that P 2 = P . We still have to prove I − P is the projection onto kerP along ranP .
• Let x ∈ kerP . Then Px = 0. So

(I − P )x = x− Px = x.

• Let y ∈ ran (I − P ). Then y = (I − P )v = v − Pv for some v ∈ X. So

Py = P (v − Pv) = 0.

Therefore, ran (I − P ) = kerP .
• Similarly, we can show that ran P = ker(I − P ).

�

(b) The projections P , Q are orthogonal, written P ⊥ Q, if PQ = QP = 0. Show
that P +Q is a projection if and only if P ⊥ Q.

Proof. First let’s assume that P ⊥ Q. We want to prove that P + Q is a projection
and for this we will use that P 2 = P and that Q2 = Q:

(P +Q)2(x) =(P +Q)(Px+Qx)

=P (Px+Qx) +Q(Px+Qx)

=P 2(x) + PQ(x) +QP (x) +Q2(x)

=P (x) +Q(x).

Now, let’s assume we know that P + Q is a projection and we want to prove that
this implies that P ⊥ Q. Hence, since we assumed that P + Q is a projection , we
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know that this equality holds (P +Q)2 = P +Q, i.e.,

(P +Q)2(x) =(P +Q)(Px+Qx)

=P (Px+Qx) +Q(Px+Qx)

=P 2(x) + PQ(x) +QP (x) +Q2(x)

=P (x) + PQ(x) +QP (x) +Q(x)

=(P +Q)(x) + PQ(x) +QP (x).

This means that
0 = PQ(x) +QP (x).

Hence, PQ = −QP .

Let x ∈ ranPQ. We have that

PQx = x.

Applying P to both sides of this equation, we get Px = x.
Analougus,

−QPx = x.

Applying Q to both sides gives us Qx = x.
Therefore

x = −QPx = −Qx = −x.

Hence, x = 0, which implies PQ = 0 = QP .

�

(c) If the projections P , Q commute, show that PQ is the projection onto ranP∩ranQ
along kerP + kerQ.

Proof. We know that PQ = QP . To shwo that PQ is the projection onto ranP∩ranQ
along kerP + kerQ, let’s apply the definition:

(PQ)2(x) =(PQ)(P (Qx))

=(PQ)(Q(Px))

=P (Q2(Px))

=P (Q(Px))

=P (P (Qx))

=P 2(Qx)

=(PQ)(x).

Hence, we proved that PQ is the projection. Remains to show that is a projection
onto ranP ∩ ranQ along kerP + kerQ.

• Let x ∈ ranP ∩ ranQ. Then Px = x = Qx. So PQx = Px = x i.e., x ∈ ranPQ.



• Let y ∈ ranPQ. Then PQy = y = QPy. So, applying the samse stratergy as in
part (b) we see that y ∈ ranP and y ∈ ranQ.

Therefore, ranPQ = (ranP ∩ ranQ).

• Let x ∈ kerP + kerQ and y ∈ kerPQ. Writing x as x = u + v where u ∈ kerP
and v ∈ kerQ we have

PQx = PQ(u+ v) = PQu+ PQv = PQu = QPu = 0.

So kerP + kerQ ⊂ kerPQ.

• Let x ∈ kerPQ. Then, either x ∈ kerQ or x ∈ (kerQ)C . If x ∈ kerQ, then
x = 0 + x. If x ∈ (kerQ)C , then Qx ∈ kerP .

Hence x can be expressed as x = x+Qx−Qx. Observe that x−Qx ∈ kerQ.

Therefore, kerPQ = kerP + kerQ.
�

(d) Give an example (or examples) to show that P + Q need not be a projection if
PQ = 0 but QP 6= 0, and PQ need not be a projection if P ,Q do not commute.

Proof. Consider the prijection given by the matrices as follows:

A =

(
0 0
0 1

)
and A =

(
0 1
0 1

)
.

Please check that these matrices are projections, but their sums are not. �

2. Let H = L2(R). For any Lebesgue measurable set A ⊂ R, define

PA : H → H

by PAf = χAf where χA is the characteristic function of A. (We define P∅ = 0.)
Show that PA is an orthogonal projection. What are its range and kernel? Show that
PA, PB commute. What is PAPB? When is PA ⊥ PB? What is PA +PB in that case?

Proof. • PAf = χAf where χA is the characteristic function of A. From the following
computations:

PA(PAf) = PA(χAf) = χA(PAf) = χA(χAf) = χAf = PAf,

we get that PAf is a projection on H. To prove that indeed is a orthogonal projection
we need to show that

〈PAf, g〉 = 〈PAg, f〉 for any f, g ∈ L2(R).



But this translates to:

〈PAf, g〉 =

∫
R
χAfg dx

=

∫
R
χAf g dx

=

∫
R
χAgf dx

=

∫
R
χAgf dx

= 〈PAg, f〉 .
Hence we proved that PAf is a orthogonal projection on H.

• Ker(PA) = {f ∈ L2(R) | PAf = 0}. Hence

kerPA =
{
f ∈ L2(R) : f = 0 a.e. on A

}
• From the above rationament we conclude that the ranPA =

{
f ∈ L2(R) : f = 0 a.e. on AC

}
.

• Let A and B ⊂ R, then PAf = χAf where χA is the characteristic function of A,
and PBf = χBf where χB is the characteristic function of B. For any f ∈ H

(PAPB)(f) =PA(PB(f))

=PA(χBf)

=χAχBf

=χBχAf

=PB(χAf)

=PB(PA(f))

=(PBPA)(f).

Hence, PA and PB commute.

• Looking at the expression of PAPB we’ve wrote above , we see that

(PAPB)(f) = χBχAf = χA∩Bf

• When PA ⊥ PB?

Answer : PA ⊥ PB if A ∩B = ∅.

• In this case, i.e., when PA ⊥ PB then PA + PB?

Answer :PA + PB = PA∪B.
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3. Suppose that H is a separable Hilbert space with ON basis {en : n ∈ N}. Let M
be the closed linear span of

e1, e3, e5, e7, . . .

and N the closed linear span of

e1 +
1

2
e2, e3 +

1

22
e4, e5 +

1

23
e6, e7 +

1

23
e8 . . . .

(a) Show that M ∩N = {0}. If X = M ⊕N , show that

X = H, X 6= H.
(Thus, X is an inner-product space when equipped with the H-inner-product.)

Proof. • Suppose x ∈ M ∩ N and let’s take x 6= 0 because it is obviously that
0 ∈ M ∩N . Then x may be expressed in terms of the elements of the basis of M as
follows

x =
∑
i∈N

xiei

and also in terms of the elements of the basis N as follows

x =
∑
i∈N

x̃i

(
ei +

1

2
i+1
2

ei+1

)
.

There must be an i, which I will denote by j ∈ N, such that xj 6= 0. In this case, we
must have x̃j 6= 0, which in particular means that the coefficient of ej+1 is nonzero.
But ej+1 is an element in N \M . Therefore, M ∩N = {0}.

• Now, I want to prove that given X = M ⊕N , then X = H and also X 6= H. We
know H is a Hilbert space, so in particular it is complete; this implies that X ⊂ H.
Hence, we need to prove that there exists an element m that belongs to H\X. Since
{en | n ∈ N} is an ON basis for H, then we can write m in terms of the elements of
the basis:

m =
∑
i∈N

xiei.

But also we can express the element m in terms of the basis of N and also in terms
of the basis of M . Matching i=even (which are the terms in N) and j=odd (which
are the terms in M) we get:

xi2
i
2

(
ei−1 +

1

2
i
2

ei

)
= xi2

i
2 ei + xiei in N

xiei − xi+12
i+1
2 ei =

(
xi − xi+12

i+1
2

)
ei in M

.

Having this said we can “approximate” m by the following sequence of elements:

mn =
n∑

i=even∈N

xi2
i
2

(
ei−1 +

1

2
i
2

ei

)
+

n∑
i=odd∈N

(
xi − xi+12

i+1
2

)
ei.



Note that the RHS has two terms, and it is trivial to see that the first term belongs
to N and the second term belongs to M . To be more clear the reason those partial
sums are in N , respectively in M , is because partial sums with finite terms are always
convergent. Take the limit as n goes to∞ from mn and set m = limn→∞ and also set
xi = 1

i
. We can see that using Parceval’s Theorem, we get that

∞∑
n

ei

i
= m.

But, m ∈ H because the series
∑∞

n
1
i2

is convergent. Therefore, m 6∈M ⊕N . This is
true because of the partial sum of the terms of N ,which made us observe that∑

i=odd∈N

2i

i
ei +

1

i
ei

doesn’t converge since by the n-th therm test we can see that
2

i
2

i
goes to∞ as i goes

to ∞.
�

(b) Let P : X → X be the projection of X onto M along N . Show that P is
unbounded.

Proof. Let’s compute the norm of P where

‖P‖ = sup
‖x‖=1

‖Px‖.

Take the sequence xn := e2n and see how P is acting on the elements of this
sequence.
Note that the norm of xn is 1, i.e., ‖xn‖ = 1. We have the following ways of writing
the elements of xn sequence . The idea is to write them in terms of the basis of M
and N respectively;

e2 = 2(e1 +
1

2
e2)− 2e1.

Therefore
Px1 = Pe2 = ‖2e1‖ = 2.

Continuing we get

e2n = 2n(e2n−1 +
1

2n
e2n)− 2ne2n−1.

Therefore
Pxn = Pe2n = ‖2e2n−1‖ = 2n.

Hence, as n→∞, ‖Pxn‖ → ∞. So P is unbounded. �



4. Let H = H1(T) denote the Sobolev space of 2π-periodic functions in L2(T) whose
weak derivative belongs to L2(T) with inner product

〈u, v〉H =

∫
T

(uv + u′v′) dx.

For f ∈ L2(T), define F : H → C by

F (v) =

∫
T
fv dx.

Show that F ∈ H∗ and find the element u ∈ H such that

F (v) = 〈u, v〉H.
What is ‖F‖H∗?

Proof. To show that F ∈ H∗ we need to show that the functional is bounded in
H1(T):

|F (v)| =|
∫

T
fv| dx

≤
∫

T
|f ||v| dx

Applying Cauchy-Schwartz inequality, we get

|F (v)| ≤
∫

T
|f ||v| dx

≤
(∫

T
|f |2 dx

) 1
2
(∫

T
|v|2 dx

) 1
2

=‖f‖L2(T)‖v‖L2(T)

≤‖f‖L2(T)‖v‖H1(T).

By Riesz representation theorem, since F is a bounded linear functional on the
Hilbert space H, then there is a unique vector u ∈ H such that

F (v) = 〈u, v〉H.
Let’s find u such that ∫

T
fv dx =

∫
T

(uv + u′v′) dx.

We can rewrite the expression above as follows:∫
T

(
fv − uv − u′v′

)
dx = 0,

which is equivalent to (integration by parts):∫
T

(
fv − uv + u′′v

)
dx = 0, for ∀v ∈ H∫

T

(
f − u+ u′′

)
v dx = 0, for ∀v ∈ H.



But this means that u is a weak solution of the ODE:

f − u+ u′′ = 0.

Rearranging the terms, and taking the complex conjugate , we get that the ODE can
be written as:

u′′ − u = −f,
where f ∈ L2(T). This is a second order inhomogeneous constant coefficient ODE,
which can be solved as follows:
1) You solve the homogeneous ODE: u′′ − u = 0 and find the homogeneous solution
uh

2) You look for a particular solution up which can be found using the variation of
parameters,
3) The solution is given by u = uh + up. This way is much harder, in the sense that
the computations get messier than expected. I have managed to finish them, but
doesn’t deserve the time to type them up. So better let’s try something easier.

Easier way to compute the norm!

We will solve that ODE writing u by its Fourier series. Since u ∈ H1(T), then f ,
u
′
, and u ∈ L2(T).

Hence,

f =
∑
n∈Z

f̂(n)einx,

u =
∑
n∈Z

û(n)einx,

u = −
∑
n∈Z

n2û(n)einx.

Plugging in in u′′ − u = −f we get:

−
∑
n∈Z

f̂(n)einx = −
∑
n∈Z

n2û(n)einx −
∑
n∈Z

û(n)einx.

This is equivalent to

f̂(n) = û(n) + n2û(n)

or

û(n) =
f̂(n)

1 + n2
.

Thus,

u =
∑
n∈Z

f̂(n)

1 + n2
einx.

Note that we didn’t really know much about u
′′
, meaning we didn’t know its regularity,

but we can prove that it belongs to L2(T), by showing that its Fourier coefficients are



square summable. This is easy to see:∑
n∈Z

|û′′(n)|2 =
∑
n∈Z

|n
2f̂(n)

1 + n2
|2

≤
∑
n∈Z

|f̂(n)|2

≤∞,

because f ∈ L2(T). Therefore u
′′ ∈ L2(T)

Now, applying the Riesz representation theorem and Parseval’s identity, we see
that

‖F‖H∗ =‖u‖H
=|〈u, u〉H|

1
2

=

(∫
T
(uu+ u′u

′
) dx

) 1
2

=

(
2π
∑
n∈Z

|û(n)|2 + 2π
∑
n∈Z

|û′(n)|2
) 1

2

=

(
2π
∑
n∈Z

| f̂(n)

1 + n2
|2 + 2π

∑
n∈Z

| nf̂(n)

1 + n2
|2
) 1

2

=

(
2π
∑
n∈Z

(1 + n2)|f̂(n)|2

(1 + n2)2
|2
) 1

2

=
√

2π

(∑
n∈Z

|f̂(n)|2

(1 + n2)

) 1
2

.

We are done! �


