
201B, Winter ’11, Professor John Hunter
Homework 8 Solutions

1. A sequence of bounded linear operators An ∈ B(H) on a Hilbert space H is
said to converge to an operator A ∈ H: uniformly if An → A with respect
to the operator norm on B(H); strongly if Anx→ Ax strongly in H for every
x ∈ H.
(a) Give an example of a sequence of operators that converges strongly but

not uniformly.

Proof. Remember we did this in 201A. Solution due to Eric!
• Let Tn = T n where T is the left shift operator on `2(Z) given by

T (x1, x2, . . .) = (x2, x3, . . .).

First, we will show that Tn converges strongly to 0. Then we will show
that it doesn’t converge uniformly to zero.
Pick any sequence x = (x1, x2, . . .) in `2(Z); we have that

xn → 0 as n→∞.
Remember that the `2(Z)-norm of Tnx is given as follows:

||Tnx|| =

(
∞∑
i=n

x2n

)1/2

<∞,

which monotonically approaches 0 as n→∞.
So, Tn converges strongly to the zero operator.

• If Tn converged uniformly, it would have to agree with the strong limit
we have found above i.e., it suppose to be 0. We can calculate the norm of
||Tn|| by first noting that clearly ||Tn|| ≤ 1. To prove that indeed the norm
of Tn is 1, we do the usual trick: if we take any sequence sn ∈ `2(T) that
begins with n zeros then ||Tnsn|| = ||sn||, which implies that ||Tn|| ≥ 1.
Thus, ||Tn|| = 1 for all n ∈ N.

Therefore we can conclude that, Tn does not converge uniformly since we
cannot have

||Tn|| = 1→ 0.

�

(b) Give an example of a sequence of operators that converges weakly but
not strongly.
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Proof. Remember we did this in 201A. Solution due to Eric!
• Let Sn = Sn where S is the right shift operator on `2(Z) given by

S(x1, x2, . . .) = (0, x1, x2, . . .).

Our proof here will mirror the structure of the argument in part (a).
First, we show that Sn converges weakly to zero. Secondly, we will show
that it cannot converge strongly to zero, implying that it must not con-
verge strongly at all.

• Given any bounded linear functional φ on `2(Z) and any x ∈ `2(Z),
we can linearly decompose the action of φ on x as the action of the
components φi of φ on the components xi of x given by φi(xj) = aixj and
find

φ(Snx) =φ(0, . . . , 0, x1, x2, . . .)

=
∞∑

i=n+1

φi(xi−n)

=
∞∑

i=n+1

aixi−n

≤

(
∞∑
j=1

x2j

)(1/2)( ∞∑
i=n+1

a2i

)(1/2)

,

which goes to zero since ai → 0 as n→∞.

Thus, Sn converges weakly to 0. However, it is clear from the definition
that ||Snx|| = ||x|| for all n ∈ N. Therefore, we cannot have

Snx→ 0 as n→∞.
Hence, Sn converges weakly to 0, but not strongly.

�

2. A subset E of a vector space X is said to be convex if

λx+ (1− λ)y ∈ E ∀x, y ∈ E, 0 ≤ λ ≤ 1.

(a) Show that a strongly closed, convex subset of a Hilbert space is weakly
closed.

Proof. If xn ⇀ x, where {xn}n ⊂ E, by Mazur’s theorem, there is a
sequence of {yn}n ⊂ E of finite convex combination of {xn}n such that
yn → x. Note that the sequence {yn}n is realy a subset of E because we
were given that E is convex! So x ∈ E, because E is strongly closed.
Therefore, we conclude that E is weakly closed.

�

(b) Show that every strongly closed, convex subset of a Hilbert space contains
a point of minimum norm.



Proof. Suppose E is a closed convex set in a Hilbert space H. Let

d = inf
x∈E
‖x‖.

• If d = 0, then we can find a sequence {xn}n so that

lim
n
‖xn‖ = 0.

Then we find {xn}n is convergent to 0. Therefore 0 is a limit point of E.
Since E is closed we find 0 ∈ E. If ‖x‖ = 0, then x = 0. Hence 0 is the
unique minimum point when d = 0.

• Suppose d > 0. Then we can find a sequence {xn}n so that limn ‖xn‖ =
d.
By the parallelogram’s law, we find

(0.1) ‖xn − xm‖2 = 2 ‖xn‖2 + 2 ‖xm‖2 − 4

∥∥∥∥xn + xm
2

∥∥∥∥2 .
Since E is convex, xn ∈ E for all n ∈ N, then we find (xn + xm)/2 ∈ E.
By the definition of d, we see that

(0.2) d2 ≤
∥∥∥∥xn + xn

2

∥∥∥∥2 .
(0.1) and (0.2) imply

‖xn − xm‖2 ≤ 2 ‖xn‖2 + 2 ‖xm‖2 − 4d2.

Since limn→∞ ‖xn‖ = d, (or limn→∞ ‖xn‖2 = d2), then for each ε > 0, we
can find Nε > 0 so that n ≥ Nε,

0 ≤ ‖xn‖2 − d2 <
ε2

4
,

which implies that whenever n,m ≥ Nε, we have

‖xn − xm‖2 <
(

2d2 +
ε2

2

)
+

(
2d2 +

ε2

2

)
− 4d2 = ε2.

We proved that {xn}n is a Cauchy sequence.

• Since H is a Hilbert space, then we can find x ∈ H so that

lim
n→∞

xn = x.

We find x is a limit point of E. Since E is closed, then x ∈ E.
We also have

lim
n→∞

‖xn‖ = ‖x‖ = d,

and this is given by the continuity of the norm. Hence x is indeed a
minimum point.



• Suppose y is another point with ‖y‖ = d. Again, using the parallelo-
gram’s law, we find

0 ≤ ‖x− y‖2 =2‖x‖2 + 2‖y‖2 − 4

∥∥∥∥x+ y

2

∥∥∥∥2
=4d2 − 4

∥∥∥∥x+ y

2

∥∥∥∥2
≤4d2 − 4d2 = 0.

We find ‖x − y‖ = 0, which implies that x = y. We conclude that the
minimum point is unique. �

And alternative proof is to observe that a strongly closed, convex set is
weakly closed, and the norm is weakly lower semi-continuous and coercive,
so it attains its minimum on any weakly closed set.


