
201B, Winter ’11, Professor John Hunter
Homework 9 Solutions

1. If A : H → H is a bounded, self-adjoint linear operator, show that

‖An‖ = ‖A‖n

for every n ∈ N. (You can use the results proved in class.)

Proof.
• Let A : H → H be a bounded, self-adjoint linear operator. Then we can
prove that Ak is also a bounded self-adjoint operator for any k ∈ N. Why?
The answer is because of the following argument.
Assume that ‖A‖ = M , where M is some constant greater than zero. Then
by induction we can conlude the following:

‖An‖ = ‖An−1A‖ ≤ ‖An−1‖A‖ ≤ ‖A‖n = Mn

and

(An)∗ = (An−1A)∗ = A∗(An−1)∗ = A(An−1) = An.

Hence, we got that indeed An is also a bounded, self-adjoint linear operator.
The linearity of Ak follows right away from the linearity of A.

• The spectral radius of a bounded self-adjoint operator is given by its norm;
more precisely, remember that

‖Ak‖ = r(Ak) = lim
n→∞

‖Akn‖1/n.

Relabelling the indices so that u = nk, we have that

‖Ak‖ = lim
u→∞
‖Au‖k/u

=
(

lim
u→∞
‖Au‖1/u

)k
=r(A)k

=‖A‖k.

Hence, we are done proving our problem. �
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2. Define m : (0, 1)→ (0, 1) be

m(x) =

 0 if 0 < x < 1/4
2(x− 1/4) if 1/4 ≤ x ≤ 3/4
1 if 3/4 < x < 1

and let M : L2(0, 1)→ L2(0, 1) be the multiplication operator Mf = mf .
Determine the spectrum of M and classify it into point, continuous and resid-
ual spectrum. Describe the eigenspace of any eigenvalues in the point spec-
trum.

Proof. due to Amanda.
• Fisrt let’s establish some properties about the operator M . Clearly, M is a
self-adjoint operator since we have the following:

〈f, Mg〉 =

∫ 1

0

f(x)m(x)g(x)dx =

∫ 1

0

m(x)f(x)g(x)dx = 〈Mf, g〉.

Note that here the fact that m(x) is a real valued function, i.e., m(x) = m(x),
helped us to conclude that M is self-adjoint.

• M is self-adjoint, implies that σr(M) = ∅ and σ(M) ⊆ [−‖M‖, ‖M‖].
This results that I have just stated can be found in Prop.9.8 and Lemma 9.13
form your textbook.

• Looking at the definition of m(x), we can see that the maximum value
that m can attain is 1 and we can also observe that 0 ≤ m2(x) ≤ 1 for all
x ∈ [0, 1].
Hence, applying the definition of the norm of M we get:

‖M‖ = sup
‖f‖=1

‖Mf(x)‖

= sup
‖f‖=1

(∫ 1

0

m2(x)|f(x)|2dx
)1/2

≤ sup
‖f‖=1

(∫ 1

0

|f(x)|2dx
)1/2

=1

• If we take any f(x) ∈ L2(0, 1) with support on (3/4, 1) such that ‖f(x)‖ = 1,
we see that ‖Mf(x)‖ = 1, so ‖M‖ = 1. Hence, σ(M) ⊆ [−1, 1]. Notice that
for any nonzero function f(x) with support on (0, 1/4) that Mf(x) = 0, so
these are functions with eigenvalue 0.

Furthermore, we know such functions exist. Similarly, any nonzero function
f(x) with support on (3/4, 1) satisfies Mf(x) = f(x) so these are functions



with eigenvalue 1. So {0, 1} ⊆ σp(M).

• Consider any λ ∈ [−1, 0). Then since m(x) ≥ 0 for all x, it follows that
m(x) − λ ≥ −λ > 0 for all x. Since (M − λI)f(x) = (m(x) − λ)f(x), if
(M − λI)f(x) = 0 then f(x) = 0 a.e., so it follows that M − λI is one-to-one.

Also, if g(x) ∈ L2(0, 1) then 1
m(x)−λg(x) is well-defined and in L2(0, 1), so

(M − λI)
1

m(x)− λ
g(x) = g(x).

So M − λI is also onto.

Hence, for λ ∈ [−1, 0) we see that λ ∈ ρ(M), so σ(M) ⊆ [0, 1]. If λ ∈ (0, 1),
then we still have M − λI is one-to-one since m(x)− λ is nonzero for all but
one value of x so (M − λI)f(x) = (m(x)− λ)f(x) = 0 implies f(x) = 0.

However, M − λI is not onto. If it were onto, then 1 ∈ ran(M − λI). Then
there would be an f(x) ∈ L2(0, 1) such that

(M − λI)f(x) = (m(x)− λ)f(x) = 1 so f(x) =
1

m(x)− λ

However, there is some x0 ∈ (1/4, 3/4) such that m(x0) = 2(x0 − 1/4) = λ.

It follows that ∫ 3/4

1/4

1

(2(x− 1/4)− λ)2
dx→∞.

Since

‖f(x)‖22 =

∫ 1/4

0

1

λ2
dx+

∫ 3/4

1/4

1

(2(x− 1/4)− λ)2
dx+

∫ 1

3/4

1

(1− λ)2
dx

we see that f(x) /∈ L2(0, 1). Hence, M − λI is not onto.

Therefore, λ ∈ σ(M) for λ ∈ (0, 1). Particularly, since M−λI is one-to-one,
we know that λ ∈ σc(M) or λ ∈ σr(M). From class we know that σr(M) = ∅
since M is self-adjoint. Hence, it must be that λ ∈ σc(M),

Therefore, the spectrum σ(M) = [0, 1] where σp(M) = {0, 1} and σc(M) =
(0, 1).
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3 Suppose that {λn} is a sequence of complex numbers such that λn → 0 as
n→∞ and define the operator K : `2(N)→ `2(N) by

K(x1, x2, . . . , xn, . . .) = (λ1x1, λ2x2, . . . , λnxn, . . .)

(a) Prove that K is a compact operator. (Recall that a set is precompact iff
it is totally bounded)

Proof. Let {λn → 0} and let K : `2(N)→ `2(N) be defined by

K(x1, x2, . . .) = (λ1x1, λ2x2, . . .).

We want to show that K is a compact operator. We know that finite-rank
operators are compact operators (you have proved this as a homework
problem in 201A) and we also know that the uniform limit of compact
operators is a compact operator.
Let

Kn : `2(N)→ `2(N)

be given by

Kn(x1, x2, . . .) = (λ1x1, λ2x2, . . . , λnxn, 0, 0, . . .).

Then Kn is finite-rank operator and hence, a compact operator.
Note that

||K −Kn|| = sup
||x||=1

||(K −Kn)x||

= sup
||x||=1

||(0, . . . , 0, λn+1xn+1, λn+2xn+2, . . .)||

= sup
‖x‖=1

∞∑
i=n+1

|λixi|2

≤ sup
‖x‖=1

∞∑
i=n+1

|λi|2|xi|2

≤ sup
‖x‖=1

sup
j=n+1

|λj|2
∞∑

i=n+1

|xi|2

≤ sup
‖x‖=1

sup
j=n+1

|λj|2
∞∑
i=1

|xi|2

≤ sup
‖x‖=1

sup
j=n+1

|λj|2‖x‖2

≤ sup
j=n+1

|λj|2,

which can be made arbitrarily small for sufficiently large n, i.e, → 0 as
n→∞.

Therefore we can conclude that Kn → K uniformly and K is compact.
�



(b) Let Pn : `2(N) → `2(N) be the orthogonal projection onto the nth com-
ponent,

Pn(x1, x2, . . . , xn, . . .) = (0, 0, . . . , 0 , xn, 0, . . .)

In what sense (uniformly, strongly, weakly) does the sum
∑

n∈N λnPn
converge to K? Does your answer change in λ 6→ 0 as n→∞

Proof. • Since Pn(x1, x2, . . .) = (0, . . . , 0, xn, 0, . . .), using the same Kn as
the one we defined above, we have

Kn =
n∑
k=1

λnPn.

We have probed above that Kn → K uniformly.
• Now we discuss the case when λn does not converge to 0, but it is still
bounded.

♥ In this case we can see that Kn doesn’t converge uniformly to K,
and the reason is the following:

lim
n→∞

||K −Kn|| = lim
n→∞

sup
‖x‖=1

∞∑
i=n+1

|λixi|2

≤ lim
n→∞

sup
‖x‖=1

∞∑
i=n+1

|λi|2|xi|2;

and since we assumed that λn 9 0 then there exists an ε > 0 such that
for every M ∈ N we can find m > M such that |λm|2 > ε. Picking x = em,
we get that

lim
n→∞

||K −Kn|| > ε.

This proves that indeed Kn doesn’t converge uniformly to K.

♥ In the same context, meaning the case when λn does not converge
to 0, but it is still bounded, we want to see if Kn converges strongly to
K. For this, let’s fix x ∈ `2(N). Assume also that |λi| ≤ G for every
i ∈ N, where G is a positive constant.

Therefore

lim
n→∞

||(K −Kn)x|| = lim
n→∞

∞∑
i=n+1

|λixi|2

≤ lim
n→∞

G2

∞∑
i=n+1

|xi|2.



But, this last term converges to 0 as n→∞, since x ∈ `2(N), by definition
implies

∞∑
i=n+1

|xi|2 ≤
∞∑
i=1

|xi|2 → 0 as n→∞.

Hence, Kn → K strongly. This clearly implies that Kn → K weakly.

• If we assume that the sequence {λn}n is not bounded either, then from
the work we did above, we can see that Kn 9 K weakly. Implicitly this
tells you that Kn doesn’t converge strongly or uniformly to K.

�

4. Determine the spectra of the left and right shift operators on `2(N)

S(x1, x2, x3, . . .) = (0, x1, x2, . . .),

T (x1, x2, x3, . . .) = (x2, x3, x4, . . .),

and classify them into point, continuous, or residual spectrum.

Proof. due to Amanda.
We have previously shown that ‖S‖ = 1 = ‖T‖. So by a theorem if λ ∈ C
such that |λ| > 1, then λ ∈ ρ(S) and λ ∈ ρ(T ). Now I will prove the following
four claims:
(a) Claim: S − λI is one-to-one for all λ ∈ C such that |λ| ≤ 1.

Proof. I will treat this in two cases. If λ = 0 then Sx = 0 implies xi = 0
for all i so x = 0. Hence, S−λI is one-to-one. Suppose that 0 < |λ| ≤ 1.
Then (S − λI)x = 0, implies

(0, x1, x2, . . .) = (λx1, λx2, λx3, . . .)

Since λ 6= 0, 0 = λx1 implies x1 = 0. Since λxn = xn−1, a simple
induction shows that xn = 0 for all n. Hence, x = 0, so S − λI is
one-to-one for all λ such that |λ| ≤ 1.

�

(b) Claim: S − λI is not onto for |λ| ≤ 1.

Proof. Note that if λ = 0 that e1 is clearly not in ran(S − λI) = ran(S).
Suppose that λ 6= 0. Then (S − λI)x = e1 implies that −λx1 = 1 and
xn−1−λxn = 0 for n ≥ 2. An induction argument shows that x1 = −1/λ,
and xn = −1/λn. However,

‖x‖ =
∞∑
n=1

(
1

|λ2|

)n



Note the above sum is a geometric series with r = 1
|λ|2 . Since 0 < |λ|2 ≤ 1,

it follows that 1
|λ|2 ≥ 1. Hence the above sum diverges, so x /∈ `2(N).

Therefore, e1 /∈ ran(S − λI) so this is not onto.
�

(c) Claim: T − λI is one-to-one for |λ| = 1.

Proof. Suppose that it was not one-to-one. Then there would be some
nonzero x ∈ `2(N) such that (T − λI)x = 0 or

(x2, x3, x4, . . .) = (λx1, λx2, λx3, . . .)

Hence, x2 = λx1 and a simple induction shows that xn = λn−1x1. There-
fore, x 6= 0 implies x1 6= 0, and since |λ| = 1 we see that

‖x‖ =
∞∑
n=0

|x1|2|λ|2n =
∞∑
n=0

|x1|2 →∞

a contradiction so it must be that x = 0, and it follows that T − λI is
one-to-one. �

(d) Claim: T − λI is not one-to-one for |λ| < 1.

Proof. By a similar argument as above, we see that any nonzero x that
satisfies (T − λI)x = 0 is of the form

x = (x1, λx1, λ
2x1, λ

3x1, . . .)

Choose x1 = 1. Then

‖x‖ =
∞∑
n=0

(|λ|2)n

Since the above is a geometric series with r = |λ|2 < 1, we see that the
sum converges, so x ∈ `2(N) is nonzero and satisfies that (T − λI)x = 0.
Hence, T − λI is not one-to-one. �

Note that claims (a) and (b) show that σ(S) = {λ ∈ C : |λ| ≤ 1}. Recall that
ran(S − λI) is dense iff ker((S − λI)∗) = ker(T − λI) = {0}. Since |λ| = |λ|,
claims (c) and (d) show that ran(S − λI) is dense iff |λ| = 1. Therefore,
σc(S) = {λ ∈ C : |λ| = 1} and σr(S) = {λ ∈ C : |λ| < 1}. Also, from the
above work we get σp(S) = ∅.

Note that claim (d) shows us that σp(T ) = {λ ∈ C : |λ| < 1}. Since
σ(T ) is a closed set, we know that σ(T ) = {λ ∈ C : |λ| ≤ 1} (as from
above we know that |λ| > 1 implies λ ∈ ρ(T )). For |λ| = 1 we know that
ker((T − λI)∗) = ker(S − λI) = {0} by claim (a). Hence, we know that
ran(T − λI) is dense. Therefore, it must be that σc(T ) = {λ ∈ C : |λ| = 1}
and σr(T ) = ∅.
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