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There are two ways of studying the relationship between various methods
for the stummation of divergent series. One consists in the attempt to
determine directly whether or not one is more general than the other, and
if this is not the case to determine under what conditions both methods
apply and give the same sum to the series that is used. Another method
involves the determination of the relative scope of the various processes
in summing certain general tvpes of series that are of fundamental im-
portance in analysis. The former method is more exhaustive from the
theoretical point of view; the latter is, perhaps, of greater practical interest.
The two most important types of series in analysis at the present time

are power series and Fourier's series. It is well known that Cesiro's
method will not sum a power series outside of its circle of convergence,
whereas Borel's method applies everywhere within the polygon of sum-
mability. However, in the case where the circle of convergence is a
natural boundary, Cesaro's method may be applicable at points on the
circle of convergence where Borel's method fails. This phase of the re-
lationship between the two methods may well be descrbed by an illumi-
nating remark made by G. H. Hardy2 in another connection, namely, that
"Borel's method, although more powerful than Cesaro's, is never more
delicate, and often less so."

Ceskro's method has been found to be admirably adapted to the study
of Fourier's series. It will give the proper sum for the Fourier's series of
any continuous function at all points, and will sum the Fourier's series of
any function having a Lebesgue integral to the value of the function, ex-
cept perhaps at a set of points of measure zero. Since there is considerable
similarity in the behavior of Fourier's series and the behavior of power
series on the circle of convergence, it is natural to expect that Borel's
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method will not be as effective as CesAro's in dealing with the former type
of series. That this is the case is proved by the results of the present
paper.
The application of Borel's method to the summing of Fourier's series

leads to the study of the behavior of the following integral3

[f(x + 2t) +f(x-2t)]e-X'2 sin Xtdt
7rJ0 t

as X becomes infinite. This integral is of the type termed by Lebesgue
singular integrals. Its kernel

o(X, t) = 2 -xk2 sin-Xt
7r t

is such that

LB(X) = fk (X t) I dt (1)

does not remain bounded as X becomes infinite. It follows therefore from
a general theorem due to Lebesgue4 that Borel's method will not sum the
Fourier's series of every function having a Lebesgue integral or even of
every continuous function.
Having found that Borel's method is less effective than Ceshro's in su'm-

ming Fourier's series, we next wish to determine if it is more effective than
ordinary convergence. The kernel of the singular integral that arises in
the study of convergence, the well known Dirichlet's integral, is

iV(n, t) =2 sin (2n + l)t
sin t

The values of

L(n) =f1 (n, t) I dt (2)

for successive values of n are termed Lebesgue constants, this designation
having been introduced by Fej6r and adopted by later writers. The fact
that they become infinite with n is tied up with the fact that the Fourier's
series of a continuous function may diverge, and their order of infinity
may be regarded as one form of measure of the degree of divergence that
is possible in the case of the Fourier's series of a continuous function.
The values for odd integral values of X of the function LB(X), defined
by (1), may be regarded as the analogues of the Lebesgue constants for
the application of Borel's method of summation. In spite of the factor
e~X in the integrand of (1), it may be shown that LB(n) is of the same
order of infinity as L(n), this order being that of log n.
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In view of this fact, one might not be surprised to find that Borel's
method was no more effective in summing the Fourier's series of a contin-
uous function than ordinary convergence. However, this is not the case,
as can be shown by exhibiting an example of a continuous function whose
Fourier's series is divergent but can nevertheless be summed by Borel's
method. This example is obtained by slightly modifying an example
given by Fejer of a function whose Fourier's series diverges. Fej&'s
function is

@(X) = ESin 2

The cosine development of this function diverges for x = 0, and cannot be
summed at this point by Borel's method. If, however, we set

a(x, n) = 2k"3 xsin 2W (O < x 5 21"'),

a(x, n) = sin 2n' x (2 4<<X 7r),
and form

F(x) = a(x, n) ( 5X:57)nE n' (°OSx _ r),

we obtain a function whose cosine development diverges for x = 0 but
can nevertheless be summed at that point by Borel's method.
The underlying reason for these facts may be briefly stated as follows.

The essential cause for the divergence as well as the failure of Borel sum,
mability in the case of the Fourier's development of Fej&'s function lies
in the degree of rapidity with which the oscillations in the neighborhood
of the origin of the individual terms of the series defining this function in-
crease in frequency as we pass from one term to the next. The effect of
the modifications we have made in the series defining Fej&'s function is
to remove such of the oscillations of each term as lie in a certain neighbor-
hood of the origin, this neighborhood becoming steadily smaller as we,
pass to later terms. Thus we find in the resulting function oscillations of
higher and higher frequency sufficiently near to the origin to cause di-
vergence of the Fourier's development at that point. On the other hand
we have removed enough of the oscillations in the immediate neighborhood
of the origin to attain Borel summability of the development at that point,
since the factor e in the corresponding singular integral neutralizes
the effect of the others.

It is apparent that the foregoing discussion, in addition to shedding
further light on the relation between Borel and Cesro summability, also
furnishes one scheme for distinguishing between various types of contin-
uous functions that have divergent Fourier's developments. It may be
added that the scope of Euler's method6 in the summation of Fourier's

286 PROC. N. A. S.



MATHEMA TICS: S. LEFSCHETZ

series is the same as that of Borel's method, the resulting singular integrals
being essentially equivalent. Hence the Fourier's development of the
function we have defined above will also be summable by Euler's method
at the point x = 0.

1 Presented to the American Mathematical Society, December 29, 1924.
2 Hardy, G. H., Proc. London Math. Soc., Ser. 2, 11,1911 (1-16), p. 10.
The integral first obtained is more complex but is essentially equivalent to the one

given here.
4 Lebesgue, H., Toulouse Annales, Ser. 3, 1, 1910 (25-128), p. 70.
6 Fej&r, L., Crele's Journal, 137, 1910 (1-5).
6 Cf. Knopp, K., Math. Zeitschrift, 15, 1922 (226-253).
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1. Let MN,, Ch. Ck be an orientable manifold and two complexes on it,
the indices denoting the dimensions.' We propose to discuss what is
meant in the most general case by the intersection of the complexes, and
in particular by their Kronecker index when h + k = n.
We assume Mn covered with a Cn to be used as a basis for the definition

of straightness and distances. If then Ch and Ck are made up exclusively
with straight elements intersecting each other in the most general way
possible, there is no essential difficulty. For straight cells in general rela-
tive position a procedure outlined elsewhere is applicable.2 If the h and
k cells of the complexes so behave, then the extension to them is also im-
mediate, the sensed intersection being denoted by Ch,. Ck, the Kronecker
index when k = n-h, by (Ch.Ck). Let rh-l, rk-1 be the boundary
cycles. We may then prove the basic Poincar6 congruence

Ch . Ck = (1) rh1... Ck + Ch .rk-1-
2. When the complexes are arbitrary our discussion will lead us only

to a definition of a clear cut intersection if their boundaries do not inter-
sect one another, and then Ch,. Ck is a cycle whose exact determination is
obtained thus: We approximate Ch as closely as we please by a polyhedral
complex Cs such that there exist Ch+, and Ch, respectively, very near C,
and its boundary, with a congruence

Ch+1 -- Ch + Ch - Ch.' (1)

Moreover, Ch contains the boundaries of both Ch and Ch. This may
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