Final Solutions: Math 201B
Winter, 2011

1. (a) Show that there is a unique solution G € D'(T) of the ODE
-G"+ G =4,

where § € D'(T) is the periodic delta-function supported at 0, and compute
the Fourier series of G.

(b) Define the Sobolev space H*(T) for real numbers s > 0. For what s > 0
is it true that G € H*(T)?

Solution.

e (a) Any distribution G € D'(T) may be expanded in a Fourier series
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where the Fourier series converges in the sense of distributions. More-
over, the coefficients G(n) are the Fourier coefficients of a distribution
if and only if they have slow growth as n — oc.

e Since the differentiation operation is continuous on D'(T) and
(einx)’ — ineinaj
we have .
-G"+G = Z (n2 +1) G(n)e™.
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e The delta-function has the Fourier series
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e Two distributions are equal if and only if their Fourier coefficients are
equal, so GG is a solution of the ODE if
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Conversely, this Fourier series defines a distributional solution since
the Fourier coefficients G(n) have slow growth (in fact they decay).
Thus the ODE has the unique distributional solution (1).



e (b) The space H*(T) consist of functions f € L?(T) with Fourier series
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such that

2
<

Z (1+n?)° ‘f(n)

nez
e The function G in (1) belongs to H*(T) if
1
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which is the case if 2(2 —s) > 1 or s < 3/2.

Remark. The function G is the Green’s function of the ODE
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with periodic boundary conditions. The solution is given by u = G * f, so
that convolution with G gives L™!. Explicitly,

ua) = [ G = )iy
The “physical” interpretation of this result (which was the origin of the

delta-function) is that G is the response of the system to a point source ¢,
and the response for a general source

fa) = /T 5z — y)f(y) dy

is obtained by superposing the corresponding point source responses by lin-
earity.



2. (a) Suppose that A : H — H is a bounded self-adjoint linear operator on
a Hilbert space H which leaves a linear subspace M C H invariant, meaning
that A : M — M. Prove that A leaves the orthogonal complement M+
invariant.

(b) Give an example of a non-selfadjoint operator A : C> — C? for which
this result is not true.

Solution.

e (a) Suppose that y € M*. Then
(y,2) =0 for every z € M.
In particular, since Ax € M for every x € M, it follows that
(y,Az) =0 for every x € M.
Since A is self-adjoint we have (y, Az) = (Ay, z), so that
(Ay,z) =0 for every x € M,
which means that Ay € M*L. Therefore A leaves M invariant.

e (b) For A € C, let A be the linear transformation on C2, with the
standard inner product, whose matrix is

a-(31)
() ey

is an invariant subspace of A, but

{3 ved

Remark. Part (a) is the basic result that allows us to reduce the action of
a self-adjoint operator to smaller and smaller subspaces in developing their
spectral theory.

Then

1S not invariant.



3. Suppose that K is a compact, but not necessarily self-adjoint, linear
operator on a Hilbert space H.

(a) Prove that I + K has closed range (where I is the identity operator).

(b) State a necessary and sufficient condition on y € H, in terms of K*, for
the solvability of the equation

(I+K)z=y. 2)

Solution.
e (a) Write A =1+ K and let
A:K—=H, K= (kerA)*

be the restriction of A to the closed subspace (ker A)L. Then A is
one-to-one and ran A = ran A; because any x € H may be written as
=1+ 2z where y € ker A and z € (ker A)*, so Az = Az.

e If A is one-to-one, then A = A, but this need not be true in general,
since K may have —1 as an eigenvalue.

e The range of A, and therefore the range of A, is closed if there exists
a constant ¢ > 0 such that

cllz| < HAJJH for all z € K. (3)

(Proof: If 3, = Az, € ran A and y, — y in H, then {yn} is Cauchy,
so {z,} is Cauchy from (3); hence z,, - = € K and y = Az € ran 4
since A is bounded.)

e Suppose, for contradiction, that (3) is false. Then there exists a se-
quence {z,} in K such that ||z,| =1 and

Hflxn — 0.

e Since K is compact and {z,,} is bounded there is a subsequence, which
we still denote by {z,}, such that Kz, converges, to z € H say. It
follows that

Ty = flxn —Kzxp — —2z

also converges. Moreover, z € K since {z,} is in K and K is a closed
linear subspace.



e We conclude that ||z|| = 1, since ||z, || = 1 for every n, and

Az = — lim Az, =0,

n—oo

which contradicts the fact that A is one-to-one. This contradiction
proves that (3) holds, so A has closed range.

e (b) For any bounded linear operator A, we have
H =ran A & ker A*.
Since ran(I 4+ K) is closed, (2) is solvable for z if and only if
y L ker(I + K7),
meaning that
(z,y) =0 for all z € H such that z + K*z = 0.
Remark. An analogous result to (a) is true for compact operators on a

Banach space X. The proof is similar, with the quotient space X/ker A
replacing the orthogonal complement (ker A)*.



4. Let H be an infinite-dimensional, separable Hilbert space.

(a) State the spectral theorem for compact, self-adjoint linear operators on
H. (You can state the theorem in any form you want provided you state it
precisely and completely.)

(b) Prove that two compact, self-adjoint linear operators A, B on H are

unitarily equivalent (meaning that there is a unitary operator U on H such
that A = U*BU) if and only if

dimker(AI — A) = dimker(A] — B)

for every A € C.

(¢) Does the result in (b) remain true if A, B are not both assumed to be
self-adjoint?

Solution.

o (a) See text.

e (b) The assumption implies that A, B have the same eigenvalues
{M € R : n € N} with the same multiplicities (possibly countably
infinite in the case of A = 0). Let {\, : n € N} denote the common
eigenvalues, repeated according to their multiplicity. By the spec-
tral theorem for compact self-adjoint operators, both A and B have a
complete orthonormal set of corresponding eigenfunctions, which we
denote by {¢, € H : n € N} and {t,, € H : n € N}, respectively.

e Define U : H — H to be the linear map such that U¢,, = 9,. Since
U maps an orthonormal basis of H to an orthonormal basis, it is a
unitary map with U* = UL,

e We have
BU¢n = Bipy, = Mthn = U (Angpn) = UAg,

It follows that BU = UA and A =U*BU.

e (c) The result is not true if A, B are not necessarily self-adjoint. For
example, consider the maps A, B : C? — C? with matrices

A1 0
A= 0 X 0 |, [B] =
0 0 u
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where A, p are distinct complex numbers. (The maps may be extended
by 0 on (C?)* to maps on an infinite-dimensional space.) Then X, u
each have geometric multiplicity one for both A and B, and all other
complex numbers have multiplicity zero, but A and B are not unitarily
equivalent; in fact, they are not even similar since they have different
Jordan normal forms.

Remark. This result shows that compact self-adjoint operators are de-
termined (up to unitary equivalence) by their spectrum and their spectral
multiplicity; non-self-adjoint operators with the same spectrum and multi-
plicity may have different structures.



5. Let E C H'(T) be a bounded subset of the Sobolev space H!(T), meaning
that there exists a constant M such that ||f|g1 < M for all f € E. Prove
that E is a precompact subset of L?(T).

Solution.

e If f € H'(T), then f is absolutely continuous and
f@) -~ 1) = [ Fe)ar (®)
y

The Cauchy-Schwartz inequality implies that every f € E satisfies
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It follows that E is equicontinuous.

e Integrating (4) with respect to y over T, we get for 0 < x < 27 that

27 f(z) — 0% fly)dy = /027r </y$ f'(t) dt) dy.

An integration by parts on the right-hand side (which is valid when f
is absolutely continuous) gives
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e Using the Cauchy-Schwartz inequality again, we get (without attempt-
ing to make the inequality sharp)
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It follows that E is bounded.



e Since F is equicontinuous and bounded, the Arzela-Ascoli theorem
implies that every sequence in E contains a uniformly convergent sub-
sequence, and hence a subsequence that converges in L?(T). Therefore
E is precompact in L2(T).

Remark. This result is a basic example of a compact Sobolev embedding;:
The inclusion map J : HY(T) < L?(T) is compact, and a uniform bound
on the derivatives of a bounded sequence of functions implies the strong
convergence of a subsequence.



