
Final Solutions: Math 201B
Winter, 2011

1. (a) Show that there is a unique solution G ∈ D′(T) of the ODE

−G′′ +G = δ,

where δ ∈ D′(T) is the periodic delta-function supported at 0, and compute
the Fourier series of G.

(b) Define the Sobolev space Hs(T) for real numbers s ≥ 0. For what s ≥ 0
is it true that G ∈ Hs(T)?

Solution.

• (a) Any distribution G ∈ D′(T) may be expanded in a Fourier series

G(x) =
∑
n∈Z

Ĝ(n)einx, Ĝ(n) =
1

2π

〈
G, e−inx

〉
where the Fourier series converges in the sense of distributions. More-
over, the coefficients Ĝ(n) are the Fourier coefficients of a distribution
if and only if they have slow growth as n→∞.

• Since the differentiation operation is continuous on D′(T) and(
einx

)′
= ineinx

we have
−G′′ +G =

∑
n∈Z

(
n2 + 1

)
Ĝ(n)einx.

• The delta-function has the Fourier series

δ(x) =
1

2π

∑
n∈Z

einx.

• Two distributions are equal if and only if their Fourier coefficients are
equal, so G is a solution of the ODE if(

n2 + 1
)
Ĝ(n) =

1

2π
or

G(x) =
1

2π

∑
n∈Z

1

n2 + 1
einx. (1)

Conversely, this Fourier series defines a distributional solution since
the Fourier coefficients Ĝ(n) have slow growth (in fact they decay).
Thus the ODE has the unique distributional solution (1).
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• (b) The space Hs(T) consist of functions f ∈ L2(T) with Fourier series

f(x) =
∑
n∈Z

f̂(n)einx

such that ∑
n∈Z

(
1 + n2

)s ∣∣∣f̂(n)
∣∣∣2 <∞.

• The function G in (1) belongs to Hs(T) if∑
n∈Z

1

(1 + n2)2−s
<∞

which is the case if 2(2− s) > 1 or s < 3/2.

Remark. The function G is the Green’s function of the ODE

Lu = f, L = − d2

dx2
+ 1

with periodic boundary conditions. The solution is given by u = G ∗ f , so
that convolution with G gives L−1. Explicitly,

u(x) =

∫
T
G(x− y)f(y) dy.

The “physical” interpretation of this result (which was the origin of the
delta-function) is that G is the response of the system to a point source δ,
and the response for a general source

f(x) =

∫
T
δ(x− y)f(y) dy

is obtained by superposing the corresponding point source responses by lin-
earity.
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2. (a) Suppose that A : H → H is a bounded self-adjoint linear operator on
a Hilbert space H which leaves a linear subspaceM⊂ H invariant, meaning
that A : M → M. Prove that A leaves the orthogonal complement M⊥
invariant.

(b) Give an example of a non-selfadjoint operator A : C2 → C2 for which
this result is not true.

Solution.

• (a) Suppose that y ∈M⊥. Then

〈y, z〉 = 0 for every z ∈M.

In particular, since Ax ∈M for every x ∈M, it follows that

〈y,Ax〉 = 0 for every x ∈M.

Since A is self-adjoint we have 〈y,Ax〉 = 〈Ay, x〉, so that

〈Ay, x〉 = 0 for every x ∈M,

which means that Ay ∈M⊥. Therefore A leaves M⊥ invariant.

• (b) For λ ∈ C, let A be the linear transformation on C2, with the
standard inner product, whose matrix is

[A] =

(
λ 1
0 λ

)
.

Then

M =

{(
a
0

)
: a ∈ C

}
.

is an invariant subspace of A, but

M⊥ =

{(
0
b

)
: b ∈ C

}
is not invariant.

Remark. Part (a) is the basic result that allows us to reduce the action of
a self-adjoint operator to smaller and smaller subspaces in developing their
spectral theory.
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3. Suppose that K is a compact, but not necessarily self-adjoint, linear
operator on a Hilbert space H.

(a) Prove that I +K has closed range (where I is the identity operator).

(b) State a necessary and sufficient condition on y ∈ H, in terms of K∗, for
the solvability of the equation

(I +K)x = y. (2)

Solution.

• (a) Write A = I +K and let

Ã : K → H, K = (kerA)⊥

be the restriction of A to the closed subspace (kerA)⊥. Then Ã is
one-to-one and ran Ã = ranA; because any x ∈ H may be written as
x = y + z where y ∈ kerA and z ∈ (kerA)⊥, so Ax = Ãz.

• If A is one-to-one, then Ã = A, but this need not be true in general,
since K may have −1 as an eigenvalue.

• The range of Ã, and therefore the range of A, is closed if there exists
a constant c > 0 such that

c‖x‖ ≤
∥∥∥Ãx∥∥∥ for all x ∈ K. (3)

(Proof: If yn = Ãxn ∈ ran Ã and yn → y in H, then {yn} is Cauchy,
so {xn} is Cauchy from (3); hence xn → x ∈ K and y = Ãx ∈ ran Ã
since Ã is bounded.)

• Suppose, for contradiction, that (3) is false. Then there exists a se-
quence {xn} in K such that ‖xn‖ = 1 and∥∥∥Ãxn∥∥∥→ 0.

• Since K is compact and {xn} is bounded there is a subsequence, which
we still denote by {xn}, such that Kxn converges, to z ∈ H say. It
follows that

xn = Ãxn −Kxn → −z

also converges. Moreover, z ∈ K since {xn} is in K and K is a closed
linear subspace.
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• We conclude that ‖z‖ = 1, since ‖xn‖ = 1 for every n, and

Ãz = − lim
n→∞

Ãxn = 0,

which contradicts the fact that Ã is one-to-one. This contradiction
proves that (3) holds, so A has closed range.

• (b) For any bounded linear operator A, we have

H = ranA⊕ kerA∗.

Since ran(I +K) is closed, (2) is solvable for x if and only if

y ⊥ ker(I +K∗),

meaning that

〈z, y〉 = 0 for all z ∈ H such that z +K∗z = 0.

Remark. An analogous result to (a) is true for compact operators on a
Banach space X. The proof is similar, with the quotient space X/ kerA
replacing the orthogonal complement (kerA)⊥.
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4. Let H be an infinite-dimensional, separable Hilbert space.

(a) State the spectral theorem for compact, self-adjoint linear operators on
H. (You can state the theorem in any form you want provided you state it
precisely and completely.)

(b) Prove that two compact, self-adjoint linear operators A, B on H are
unitarily equivalent (meaning that there is a unitary operator U on H such
that A = U∗BU) if and only if

dim ker(λI −A) = dim ker(λI −B)

for every λ ∈ C.

(c) Does the result in (b) remain true if A, B are not both assumed to be
self-adjoint?

Solution.

• (a) See text.

• (b) The assumption implies that A, B have the same eigenvalues
{λn ∈ R : n ∈ N} with the same multiplicities (possibly countably
infinite in the case of λ = 0). Let {λn : n ∈ N} denote the common
eigenvalues, repeated according to their multiplicity. By the spec-
tral theorem for compact self-adjoint operators, both A and B have a
complete orthonormal set of corresponding eigenfunctions, which we
denote by {φn ∈ H : n ∈ N} and {ψn ∈ H : n ∈ N}, respectively.

• Define U : H → H to be the linear map such that Uφn = ψn. Since
U maps an orthonormal basis of H to an orthonormal basis, it is a
unitary map with U∗ = U−1.

• We have
BUφn = Bψn = λnψn = U (λnφn) = UAφn

It follows that BU = UA and A = U∗BU .

• (c) The result is not true if A, B are not necessarily self-adjoint. For
example, consider the maps A,B : C3 → C3 with matrices

[A] =

 λ 1 0
0 λ 0
0 0 µ

 , [B] =

 µ 1 0
0 µ 0
0 0 λ


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where λ, µ are distinct complex numbers. (The maps may be extended
by 0 on (C3)⊥ to maps on an infinite-dimensional space.) Then λ, µ
each have geometric multiplicity one for both A and B, and all other
complex numbers have multiplicity zero, but A and B are not unitarily
equivalent; in fact, they are not even similar since they have different
Jordan normal forms.

Remark. This result shows that compact self-adjoint operators are de-
termined (up to unitary equivalence) by their spectrum and their spectral
multiplicity; non-self-adjoint operators with the same spectrum and multi-
plicity may have different structures.
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5. Let E ⊂ H1(T) be a bounded subset of the Sobolev spaceH1(T), meaning
that there exists a constant M such that ‖f‖H1 ≤ M for all f ∈ E. Prove
that E is a precompact subset of L2(T).

Solution.

• If f ∈ H1(T), then f is absolutely continuous and

f(x)− f(y) =

∫ x

y
f ′(t) dt. (4)

The Cauchy-Schwartz inequality implies that every f ∈ E satisfies

|f(x)− f(y)| =
∣∣∣∣∫ x

y
1 · f ′(t) dt

∣∣∣∣
≤
∣∣∣∣∫ x

y
12 dt

∣∣∣∣1/2 ∣∣∣∣∫ x

y

∣∣f ′(t)∣∣2 dt∣∣∣∣1/2
≤M |x− y|1/2

It follows that E is equicontinuous.

• Integrating (4) with respect to y over T, we get for 0 ≤ x ≤ 2π that

2πf(x)−
∫ 2π

0
f(y) dy =

∫ 2π

0

(∫ x

y
f ′(t) dt

)
dy.

An integration by parts on the right-hand side (which is valid when f
is absolutely continuous) gives

2πf(x)−
∫ 2π

0
f(y) dy = 2π

∫ x

2π
f ′(t) dt+

∫ 2π

0
yf ′(y) dy.

• Using the Cauchy-Schwartz inequality again, we get (without attempt-
ing to make the inequality sharp)

|f(x)| ≤ 1

2π

∣∣∣∣∫ 2π

0
f(y) dy

∣∣∣∣+

∣∣∣∣∫ x

2π
f ′(t) dt

∣∣∣∣+
1

2π

∣∣∣∣∫ 2π

0
yf ′(y) dy

∣∣∣∣
≤ 1√

2π

(∫ 2π

0
|f(y)|2 dy

)1/2

+
√

2π

(∫ 2π

0

∣∣f ′(t)∣∣2 dt)1/2

+
√

2π

(∫ 2π

0

∣∣f ′(y)
∣∣2 dy)1/2

≤ 7M

It follows that E is bounded.
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• Since E is equicontinuous and bounded, the Arzelà-Ascoli theorem
implies that every sequence in E contains a uniformly convergent sub-
sequence, and hence a subsequence that converges in L2(T). Therefore
E is precompact in L2(T).

Remark. This result is a basic example of a compact Sobolev embedding:
The inclusion map J : H1(T) ↪→ L2(T) is compact, and a uniform bound
on the derivatives of a bounded sequence of functions implies the strong
convergence of a subsequence.

9


