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1 Functions and convolutions

1.1 Periodic functions

e Periodic functions. Let T = R/(27Z) denote the circle, or one-
dimensional torus. A function f : T — C is equivalent to a 2m-periodic
function f : R — C. (The real line R is the universal cover of the circle
T and f is the lift of £ from T to R.) We identify f with f.

e Continuous functions. The space of continuous functions f : T — C
is denoted by C(T). It is a Banach space when equipped with the
maximum (sup) norm.

e Smooth functions. If £ € N, the space k-times continuously differ-
entiable functions is denoted by C*(T). This is a Banach space with
the C*-norm (the sum of the maximum values of a function and its
derivatives of order less than or equal to k.) The space of smooth func-
tions (functions with continuous derivatives of all orders) is denoted
by C*°(T). This is a Fréchet space with the metric
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e [P-spaces. For 1 < p < oo, the Banach space LP(T) consists of all
Lebesgue measurable functions f : T — C such that

11, = ([ If(:z)\pdx)l/ " e

The space L*°(T) consists of essentially bounded functions. We iden-
tify functions that are equal almost everywhere.



e L’-Hilbert space. The space L?(T) is a Hilbert space with inner
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product

(f.9) = /1r F@)g(a) de

Density. The space C*°(T) is dense in LP(T) for 1 < p < oo and
in C(T), but it is not dense in L*°(T). More specifically, according
to the Weierstrass approximation theorem, the same density results
are true for the space P(T) of trigonometric polynomials of the form
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Convolutions and approximate identities

Convolution. If f, g € L!(T), the convolution f*g € L!(T) is defined
by

(F+ o)) = [ fo=)ato) du.
Young’s inequality. If 1 < p,q,r < oo satisfy
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and f € LP(T), g € LY(T), then f g € L"(T). Moreover,

1+ gl < I1f1l, gl -

This follows from Fubini’s theorem. In particular, convolution with an
L'-function is a bounded map on L?,

1+ gll, < [1£l1 gl

and the convolution of L2-functions is bounded (and therefore contin-
uous by a density argument)

1+ 9llee < WIf1l2 llglls -

e Approximate identity. A sequence of functions

{¢p € LY(T) : n € N}



is an approximate identity if there exists a constant M such that
/ Gpdr =1 for every n,
T
/ |pn| dx < M for all n,
T

lim || dz =0 for every 6 > 0.
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(Analogous definitions apply to a family of functions that depend on
a continuous parameter.)

e Mollification. If {¢,} is an approximate identity and f € C(T) then
¢nx f € C(T) and ¢, * f — f uniformly as n — oo. If f € LP(T),
and 1 < p < oo, then ¢, * f — fin LP as n — oo. If ¢, € C(T)
and f € LY(T), then ¢, x f € C°°(T). (The Lebesgue dominated
convergence theorem justifies “differentiating under the integral sign.”)

2 Fourier Series

2.1 L'-theory

e Definition of Fourier coefficients. For f € L(T) define the Fourier
coefficients f : Z — C by

fo) = 5 [ e da.

e Fourier coefficients determine a function. If f,g € L!(T) and

A

f(n) =g(n) for all n € Z

then f = g (up to pointwise a.e.-equivalence). Thus follows from ap-
proximation of a function by convolution with an approximate identity
that consists of trigonometric polynomials (e.g. the Féjer kernel.)

e Riemann-Lebesgue lemma. If f € L!(T), then

f(n) —0 as [n| = oo.

This result follows from the estimate
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and the density of trigonometric polynomials (or smooth functions) in
LY(T).

Convolution theorem. If f g € L'(T), then

o —

(f * 9)(n) = 2w f(n)i(n).

That is, the Fourier transform maps the convolution product of func-
tions to the pointwise product of their Fourier coefficients.

L?*-theory

Fourier basis. The functions

e inerl
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form an orthonormal basis of L?(T). The orthonormality is easy to
verify; the completeness follow by the use of convolution with an ap-

proximate identity that consists of trigonometric polynomials to ap-
proximate a general f € L?(T).

Fourier series of an L?-function. A function f € L'(T) belongs to
L?(T) if and only if
> | fm)

and then (with the above normalization of the Fourier coefficients)

f(x) =) f(n)e™
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2
‘<oo

where the series converges unconditionally with respect to the L2-
norm.

e Parseval’s theorem. If f, g € L?(T) then




2.3

Absolutely convergent Fourier series

e Absolutely convergent Fourier series. If f € L'(T) has absolutely
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convergent Fourier coefficients f € ¢! (Z), meaning that

>
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fm)| < oo,

then f € C(T). This follows from the fact that the Fourier series of
f converges uniformly to f by the Weierstrass M-test. We denote the
space of functions with absolutely convergent Fourier series by A(T).

Pointwise divergence of Fourier series. There are continuous
functions whose Fourier series converge uniformly but not absolutely,
and continuous function whose Fourier series do not do not converge
uniformly; in fact, there are continuous functions whose Fourier series
diverge pointwise on an arbitrary set of Lebesgue measure zero. If
f € LP(T) for 1 < p < oo, then the Fourier series of f converges
pointwise a.e. to f (Carlson, Hunt) but there exist functions f € L!(T)
whose Fourier series diverge pointwise a.e. (Kolmogorov).

Convolution theorem. If f, g € A(T), then fg € A(T) and

—

(fg)(n) =21 f(n—k)j(k).

That is, the Fourier transform maps the pointwise product of functions
to the discrete convolution product of their Fourier coefficients.

Weak derivatives and Sobolev spaces
Weak derivative. A function f € L!(T) has weak derivative g =
# e L\(T) if
/ fé de = — / go dx for all ¢ € C>°(T).
T T

That is, weak derivatives are defined by integration by parts. If f €
C1(T), then the weak derivative agrees with the pointwise derivative
(up to pointwise a.e.-equivalence).

Fourier coefficients of derivatives. If f € L!(T) has weak deriva-
tive f/ € L'(T), then R
f'(n) =inf(n).



e Decay of Fourier coefficients. If k € N and f € W*!(T), meaning
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that f has weak derivatives f', f,..., f(¥) € LY(T) of order less than
or equal to k, then

In*f(n) =0 as |n| — oo.

This follows from an application of the Riemann-Lebesgue lemma to

fk),

L2-Sobolev spaces. If 0 < s < oo, the Sobolev space H*(T) consists
of all functions f € L?(T) such that

Z (1 +n2)s ‘f(n)
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This is a Hilbert space with inner product

(f,9) s =27 (14n2)° f(n)j(n).
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If k € N is an integer, then H¥(T) consists of all functions f € L?(T)
that have weak derivatives of order less than or equal to k£ belonging
to L%(T).

Sobolev embedding. If f € H*(T) and s > 1/2, then f € C(T) and
there is a constant C' > 0, depending only on s, such that

[flloe < CUSfllgzs  forall f e HT).

This theorem follows by showing that f € (1(Z) is absolutely conver-
gent so f € A(T). Roughly speaking, for functions of a single variable,
more than one-half an L?-derivative implies continuity.

Periodic distributions

Test functions. The space D(T) of periodic test functions consists
of all smooth functions ¢ € C*°(T) with the following notion of con-
vergence of test functions: ¢, — ¢ in D(T) if

¢£L’“) — ¢(k) uniformly as n — oo for every k =0,1,2,....

Here ¢%) denotes the kth derivative of ¢.



Fourier series of test functions. A function ¢ € L!(T) belongs to
D(T) if and only if its Fourier coefficients are rapidly decreasing,

Infé(n) = 0 as |n| — oo for every k € N.

This follows from the decay estimates for the Fourier coefficients of
smooth functions and the Sobolev embedding theorem. (Note that
¢ € H* for every k € N if and only if ¢ € C¥ for every k € N.) The
Fourier series of ¢ € D(T) converges to ¢ in the sense of test functions.

Distributions. A distribution 7T is a continuous linear functional
T:D(T) — C.

The space of distributions is denoted D’(T) and the action of T' € D’
on ¢ € D by (T, ¢). (This duality paring is linear in both arguments,
not anti-linear in the first argument like the inner product on a Hilbert
space.)

Convergence of distributions. A sequence of of distributions {7}, }
converges to a distribution 7', written T;, — T, if

(T, 0) = (T, ¢) as n — oo for every ¢ € D(T).

Order of a distribution. If T € D'(T), there is a non-negative
integer k£ and a constant C such that

(T, )| < Cligllcr for all ¢ € D(T).
The minimal such integer k is called the order of T.

Regular distributions. If f € LY(T), we define 7y € D'(T) by

(Ty,¢) = /T fode.

Any distribution of this form is called a regular distribution. We iden-
tify f with Ty and regard L'(T) as a subspace of D'(T).

Distributional derivative. Every 7' € D(T) has a distributional
derivative 77 € D(T) defined by

<T,’ ¢> = 7<T’ ¢,>

A function f € L'(T) has a weak derivative f’ € L'(T) if and only if
its distributional derivative is regular, and then (Tf)" = Ty.



Fourier series of distributions. The Fourier coefficients 7' : Z — C
of a distribution 7" € D(T) are defined by

A 1

T(n) = 5 (T, ™)

A linear functional on D(T) is a distribution if and only if its Fourier
coefficients have slow growth, meaning that the exists a non-negative
integer k£ and a constant C' such that

‘T(n)‘ §C’(1+n2)k/2 for all n € Z.

In that case, the Fourier series of T,
ne”Z

converges to T in the sense of distributions.

The delta function. The periodic §-function supported at 0 is the
distribution 6 € D'(T) defined by

(0,9) = ¢(0)

This is a distribution of order zero, but it is not a regular distribution.
(It is, in fact, a measure.) Its Fourier series is

1 .
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