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1 Functions and convolutions

1.1 Periodic functions

• Periodic functions. Let T = R/(2πZ) denote the circle, or one-
dimensional torus. A function f : T→ C is equivalent to a 2π-periodic
function f̃ : R→ C. (The real line R is the universal cover of the circle
T and f̃ is the lift of f from T to R.) We identify f with f̃ .

• Continuous functions. The space of continuous functions f : T→ C
is denoted by C(T). It is a Banach space when equipped with the
maximum (sup) norm.

• Smooth functions. If k ∈ N, the space k-times continuously differ-
entiable functions is denoted by Ck(T). This is a Banach space with
the Ck-norm (the sum of the maximum values of a function and its
derivatives of order less than or equal to k.) The space of smooth func-
tions (functions with continuous derivatives of all orders) is denoted
by C∞(T). This is a Fréchet space with the metric

d(φ, ψ) =
∞∑
k=0

1

2k

(
‖φ− ψ‖Ck

1 + ‖φ− ψ‖Ck

)
.

• Lp-spaces. For 1 ≤ p < ∞, the Banach space Lp(T) consists of all
Lebesgue measurable functions f : T→ C such that

‖f‖p =

(∫
T
|f(x)|p dx

)1/p

<∞.

The space L∞(T) consists of essentially bounded functions. We iden-
tify functions that are equal almost everywhere.
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• L2-Hilbert space. The space L2(T) is a Hilbert space with inner
product

〈f, g〉 =

∫
T
f(x)g(x) dx

• Density. The space C∞(T) is dense in Lp(T) for 1 ≤ p < ∞ and
in C(T), but it is not dense in L∞(T). More specifically, according
to the Weierstrass approximation theorem, the same density results
are true for the space P(T) of trigonometric polynomials of the form∑
|n|≤N cne

inx.

1.2 Convolutions and approximate identities

• Convolution. If f, g ∈ L1(T), the convolution f ∗g ∈ L1(T) is defined
by

(f ∗ g)(x) =

∫
T
f(x− y)g(y) dy.

• Young’s inequality. If 1 ≤ p, q, r ≤ ∞ satisfy

1

p
+

1

q
= 1 +

1

r

and f ∈ Lp(T), g ∈ Lq(T), then f ∗ g ∈ Lr(T). Moreover,

‖f ∗ g‖r ≤ ‖f‖p ‖g‖q .

This follows from Fubini’s theorem. In particular, convolution with an
L1-function is a bounded map on Lp,

‖f ∗ g‖p ≤ ‖f‖1 ‖g‖p ;

and the convolution of L2-functions is bounded (and therefore contin-
uous by a density argument)

‖f ∗ g‖∞ ≤ ‖f‖2 ‖g‖2 .

• Approximate identity. A sequence of functions

{φn ∈ L1(T) : n ∈ N}
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is an approximate identity if there exists a constant M such that∫
T
φn dx = 1 for every n,∫

T
|φn| dx ≤M for all n,

lim
n→∞

∫
δ<|x|<π

|φn| dx = 0 for every δ > 0.

(Analogous definitions apply to a family of functions that depend on
a continuous parameter.)

• Mollification. If {φn} is an approximate identity and f ∈ C(T) then
φn ∗ f ∈ C(T) and φn ∗ f → f uniformly as n → ∞. If f ∈ Lp(T),
and 1 ≤ p < ∞, then φn ∗ f → f in Lp as n → ∞. If φn ∈ C∞(T)
and f ∈ L1(T), then φn ∗ f ∈ C∞(T). (The Lebesgue dominated
convergence theorem justifies “differentiating under the integral sign.”)

2 Fourier Series

2.1 L1-theory

• Definition of Fourier coefficients. For f ∈ L1(T) define the Fourier
coefficients f̂ : Z→ C by

f̂(n) =
1

2π

∫
T
f(x)e−inx dx.

• Fourier coefficients determine a function. If f, g ∈ L1(T) and

f̂(n) = ĝ(n) for all n ∈ Z

then f = g (up to pointwise a.e.-equivalence). Thus follows from ap-
proximation of a function by convolution with an approximate identity
that consists of trigonometric polynomials (e.g. the Féjer kernel.)

• Riemann-Lebesgue lemma. If f ∈ L1(T), then

f̂(n)→ 0 as |n| → ∞.

This result follows from the estimate∥∥∥f̂∥∥∥
`∞
≤ 1

2π
‖f‖L1
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and the density of trigonometric polynomials (or smooth functions) in
L1(T).

• Convolution theorem. If f, g ∈ L1(T), then

(̂f ∗ g)(n) = 2πf̂(n)ĝ(n).

That is, the Fourier transform maps the convolution product of func-
tions to the pointwise product of their Fourier coefficients.

2.2 L2-theory

• Fourier basis. The functions{
1√
2π
einx : n ∈ Z

}
form an orthonormal basis of L2(T). The orthonormality is easy to
verify; the completeness follow by the use of convolution with an ap-
proximate identity that consists of trigonometric polynomials to ap-
proximate a general f ∈ L2(T).

• Fourier series of an L2-function. A function f ∈ L1(T) belongs to
L2(T) if and only if ∑

n∈Z

∣∣∣f̂(n)
∣∣∣2 <∞

and then (with the above normalization of the Fourier coefficients)

f(x) =
∑
n∈Z

f̂(n)einx

where the series converges unconditionally with respect to the L2-
norm.

• Parseval’s theorem. If f, g ∈ L2(T) then

〈f, g〉 = 2π
∑
n∈Z

f̂(n)ĝ(n).
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2.3 Absolutely convergent Fourier series

• Absolutely convergent Fourier series. If f ∈ L1(T) has absolutely
convergent Fourier coefficients f̂ ∈ `1(Z), meaning that∑

n∈Z

∣∣∣f̂(n)
∣∣∣ <∞,

then f ∈ C(T). This follows from the fact that the Fourier series of
f converges uniformly to f by the Weierstrass M -test. We denote the
space of functions with absolutely convergent Fourier series by A(T).

• Pointwise divergence of Fourier series. There are continuous
functions whose Fourier series converge uniformly but not absolutely,
and continuous function whose Fourier series do not do not converge
uniformly; in fact, there are continuous functions whose Fourier series
diverge pointwise on an arbitrary set of Lebesgue measure zero. If
f ∈ Lp(T) for 1 < p ≤ ∞, then the Fourier series of f converges
pointwise a.e. to f (Carlson, Hunt) but there exist functions f ∈ L1(T)
whose Fourier series diverge pointwise a.e. (Kolmogorov).

• Convolution theorem. If f, g ∈ A(T), then fg ∈ A(T) and

(̂fg)(n) = 2π
∑
k∈Z

f̂(n− k)ĝ(k).

That is, the Fourier transform maps the pointwise product of functions
to the discrete convolution product of their Fourier coefficients.

2.4 Weak derivatives and Sobolev spaces

• Weak derivative. A function f ∈ L1(T) has weak derivative g =
f ′ ∈ L1(T) if∫

T
fφ′ dx = −

∫
T
gφ dx for all φ ∈ C∞(T).

That is, weak derivatives are defined by integration by parts. If f ∈
C1(T), then the weak derivative agrees with the pointwise derivative
(up to pointwise a.e.-equivalence).

• Fourier coefficients of derivatives. If f ∈ L1(T) has weak deriva-
tive f ′ ∈ L1(T), then

f̂ ′(n) = inf̂(n).
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• Decay of Fourier coefficients. If k ∈ N and f ∈W k,1(T), meaning
that f has weak derivatives f ′, f ′′, . . . , f (k) ∈ L1(T) of order less than
or equal to k, then

|n|kf̂(n)→ 0 as |n| → ∞.

This follows from an application of the Riemann-Lebesgue lemma to
f (k).

• L2-Sobolev spaces. If 0 ≤ s <∞, the Sobolev space Hs(T) consists
of all functions f ∈ L2(T) such that∑

n∈Z

(
1 + n2

)s ∣∣∣f̂(n)
∣∣∣2 <∞.

This is a Hilbert space with inner product

〈f, g〉Hs = 2π
∑
n∈Z

(
1 + n2

)s
f̂(n)ĝ(n).

If k ∈ N is an integer, then Hk(T) consists of all functions f ∈ L2(T)
that have weak derivatives of order less than or equal to k belonging
to L2(T).

• Sobolev embedding. If f ∈ Hs(T) and s > 1/2, then f ∈ C(T) and
there is a constant C > 0, depending only on s, such that

‖f‖∞ ≤ C ‖f‖Hs for all f ∈ Hs(T).

This theorem follows by showing that f̂ ∈ `1(Z) is absolutely conver-
gent so f ∈ A(T). Roughly speaking, for functions of a single variable,
more than one-half an L2-derivative implies continuity.

2.5 Periodic distributions

• Test functions. The space D(T) of periodic test functions consists
of all smooth functions φ ∈ C∞(T) with the following notion of con-
vergence of test functions: φn → φ in D(T) if

φ(k)n → φ(k) uniformly as n→∞ for every k = 0, 1, 2, . . . .

Here φ(k) denotes the kth derivative of φ.
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• Fourier series of test functions. A function φ ∈ L1(T) belongs to
D(T) if and only if its Fourier coefficients are rapidly decreasing,

|n|kφ̂(n)→ 0 as |n| → ∞ for every k ∈ N.

This follows from the decay estimates for the Fourier coefficients of
smooth functions and the Sobolev embedding theorem. (Note that
φ ∈ Hk for every k ∈ N if and only if φ ∈ Ck for every k ∈ N.) The
Fourier series of φ ∈ D(T) converges to φ in the sense of test functions.

• Distributions. A distribution T is a continuous linear functional

T : D(T)→ C.

The space of distributions is denoted D′(T) and the action of T ∈ D′
on φ ∈ D by 〈T, φ〉. (This duality paring is linear in both arguments,
not anti-linear in the first argument like the inner product on a Hilbert
space.)

• Convergence of distributions. A sequence of of distributions {Tn}
converges to a distribution T , written Tn ⇀ T , if

〈Tn, φ〉 → 〈T, φ〉 as n→∞ for every φ ∈ D(T).

• Order of a distribution. If T ∈ D′(T), there is a non-negative
integer k and a constant C such that

|〈T, φ〉| ≤ C‖φ‖Ck for all φ ∈ D(T).

The minimal such integer k is called the order of T .

• Regular distributions. If f ∈ L1(T), we define Tf ∈ D′(T) by

〈Tf , φ〉 =

∫
T
fφ dx.

Any distribution of this form is called a regular distribution. We iden-
tify f with Tf and regard L1(T) as a subspace of D′(T).

• Distributional derivative. Every T ∈ D(T) has a distributional
derivative T ′ ∈ D(T) defined by

〈T ′, φ〉 = −〈T, φ′〉

A function f ∈ L1(T) has a weak derivative f ′ ∈ L1(T) if and only if
its distributional derivative is regular, and then (Tf )′ = Tf ′ .
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• Fourier series of distributions. The Fourier coefficients T̂ : Z→ C
of a distribution T ∈ D(T) are defined by

T̂ (n) =
1

2π
〈T, e−inx〉

A linear functional on D(T) is a distribution if and only if its Fourier
coefficients have slow growth, meaning that the exists a non-negative
integer k and a constant C such that∣∣∣T̂ (n)

∣∣∣ ≤ C (1 + n2
)k/2

for all n ∈ Z.

In that case, the Fourier series of T ,∑
n∈Z

T̂ (n)einx

converges to T in the sense of distributions.

• The delta function. The periodic δ-function supported at 0 is the
distribution δ ∈ D′(T) defined by

〈δ, φ〉 = φ(0)

This is a distribution of order zero, but it is not a regular distribution.
(It is, in fact, a measure.) Its Fourier series is

δ =
1

2π

∑
n∈Z

einx.
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