Outline of Fourier Series: Math 201B

February 24, 2011

1 Functions and convolutions

1.1 Periodic functions

- **Periodic functions.** Let $\mathbb{T} = \mathbb{R}/(2\pi\mathbb{Z})$ denote the circle, or onedimensional torus. A function $f: \mathbb{T} \to \mathbb{C}$ is equivalent to a 2π -periodic function $\tilde{f}: \mathbb{R} \to \mathbb{C}$. (The real line \mathbb{R} is the universal cover of the circle \mathbb{T} and \tilde{f} is the lift of f from \mathbb{T} to \mathbb{R} .) We identify f with \tilde{f} .
- Continuous functions. The space of continuous functions $f : \mathbb{T} \to \mathbb{C}$ is denoted by $C(\mathbb{T})$. It is a Banach space when equipped with the maximum (sup) norm.
- Smooth functions. If $k \in \mathbb{N}$, the space k-times continuously differentiable functions is denoted by $C^k(\mathbb{T})$. This is a Banach space with the C^k -norm (the sum of the maximum values of a function and its derivatives of order less than or equal to k.) The space of smooth functions (functions with continuous derivatives of all orders) is denoted by $C^{\infty}(\mathbb{T})$. This is a Fréchet space with the metric

$$d(\phi,\psi) = \sum_{k=0}^{\infty} \frac{1}{2^k} \left(\frac{\|\phi - \psi\|_{C^k}}{1 + \|\phi - \psi\|_{C^k}} \right).$$

• L^p -spaces. For $1 \leq p < \infty$, the Banach space $L^p(\mathbb{T})$ consists of all Lebesgue measurable functions $f : \mathbb{T} \to \mathbb{C}$ such that

$$||f||_p = \left(\int_{\mathbb{T}} |f(x)|^p \, dx\right)^{1/p} < \infty.$$

The space $L^{\infty}(\mathbb{T})$ consists of essentially bounded functions. We identify functions that are equal almost everywhere. • L^2 -Hilbert space. The space $L^2(\mathbb{T})$ is a Hilbert space with inner product

$$\langle f,g \rangle = \int_{\mathbb{T}} \overline{f(x)} g(x) \, dx$$

• **Density.** The space $C^{\infty}(\mathbb{T})$ is dense in $L^{p}(\mathbb{T})$ for $1 \leq p < \infty$ and in $C(\mathbb{T})$, but it is not dense in $L^{\infty}(\mathbb{T})$. More specifically, according to the Weierstrass approximation theorem, the same density results are true for the space $\mathcal{P}(\mathbb{T})$ of trigonometric polynomials of the form $\sum_{|n|\leq N} c_n e^{inx}$.

1.2 Convolutions and approximate identities

• Convolution. If $f, g \in L^1(\mathbb{T})$, the convolution $f * g \in L^1(\mathbb{T})$ is defined by

$$(f * g)(x) = \int_{\mathbb{T}} f(x - y)g(y) \, dy$$

• Young's inequality. If $1 \le p, q, r \le \infty$ satisfy

$$\frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r}$$

and $f \in L^p(\mathbb{T}), g \in L^q(\mathbb{T})$, then $f * g \in L^r(\mathbb{T})$. Moreover,

$$||f * g||_r \le ||f||_p ||g||_q.$$

This follows from Fubini's theorem. In particular, convolution with an L^1 -function is a bounded map on L^p ,

$$||f * g||_p \le ||f||_1 ||g||_p;$$

and the convolution of L^2 -functions is bounded (and therefore continuous by a density argument)

$$\|f * g\|_{\infty} \le \|f\|_2 \|g\|_2.$$

• Approximate identity. A sequence of functions

$$\{\phi_n \in L^1(\mathbb{T}) : n \in \mathbb{N}\}\$$

is an approximate identity if there exists a constant M such that

$$\int_{\mathbb{T}} \phi_n \, dx = 1 \quad \text{for every } n,$$

$$\int_{\mathbb{T}} |\phi_n| \, dx \le M \quad \text{for all } n,$$

$$\lim_{n \to \infty} \int_{\delta < |x| < \pi} |\phi_n| \, dx = 0 \quad \text{for every } \delta > 0.$$

(Analogous definitions apply to a family of functions that depend on a continuous parameter.)

• Mollification. If $\{\phi_n\}$ is an approximate identity and $f \in C(\mathbb{T})$ then $\phi_n * f \in C(\mathbb{T})$ and $\phi_n * f \to f$ uniformly as $n \to \infty$. If $f \in L^p(\mathbb{T})$, and $1 \leq p < \infty$, then $\phi_n * f \to f$ in L^p as $n \to \infty$. If $\phi_n \in C^{\infty}(\mathbb{T})$ and $f \in L^1(\mathbb{T})$, then $\phi_n * f \in C^{\infty}(\mathbb{T})$. (The Lebesgue dominated convergence theorem justifies "differentiating under the integral sign.")

2 Fourier Series

2.1 L^1 -theory

• Definition of Fourier coefficients. For $f \in L^1(\mathbb{T})$ define the Fourier coefficients $\hat{f} : \mathbb{Z} \to \mathbb{C}$ by

$$\hat{f}(n) = \frac{1}{2\pi} \int_{\mathbb{T}} f(x) e^{-inx} \, dx.$$

• Fourier coefficients determine a function. If $f, g \in L^1(\mathbb{T})$ and

$$\hat{f}(n) = \hat{g}(n) \quad \text{for all } n \in \mathbb{Z}$$

then f = g (up to pointwise a.e.-equivalence). Thus follows from approximation of a function by convolution with an approximate identity that consists of trigonometric polynomials (*e.g.* the Féjer kernel.)

• Riemann-Lebesgue lemma. If $f \in L^1(\mathbb{T})$, then

$$f(n) \to 0$$
 as $|n| \to \infty$.

This result follows from the estimate

$$\left\| \hat{f} \right\|_{\ell^{\infty}} \le \frac{1}{2\pi} \, \|f\|_{L^1}$$

and the density of trigonometric polynomials (or smooth functions) in $L^1(\mathbb{T})$.

• Convolution theorem. If $f, g \in L^1(\mathbb{T})$, then

$$\widehat{(f*g)}(n) = 2\pi \widehat{f}(n)\widehat{g}(n).$$

That is, the Fourier transform maps the convolution product of functions to the pointwise product of their Fourier coefficients.

2.2 L^2 -theory

• Fourier basis. The functions

$$\left\{\frac{1}{\sqrt{2\pi}}e^{inx}:n\in\mathbb{Z}\right\}$$

form an orthonormal basis of $L^2(\mathbb{T})$. The orthonormality is easy to verify; the completeness follow by the use of convolution with an approximate identity that consists of trigonometric polynomials to approximate a general $f \in L^2(\mathbb{T})$.

• Fourier series of an L^2 -function. A function $f \in L^1(\mathbb{T})$ belongs to $L^2(\mathbb{T})$ if and only if

$$\sum_{n \in \mathbb{Z}} \left| \hat{f}(n) \right|^2 < \infty$$

and then (with the above normalization of the Fourier coefficients)

$$f(x) = \sum_{n \in \mathbb{Z}} \hat{f}(n) e^{inx}$$

where the series converges unconditionally with respect to the L^2 -norm.

• Parseval's theorem. If $f, g \in L^2(\mathbb{T})$ then

$$\langle f,g \rangle = 2\pi \sum_{n \in \mathbb{Z}} \hat{f}(n)\hat{g}(n).$$

2.3 Absolutely convergent Fourier series

• Absolutely convergent Fourier series. If $f \in L^1(\mathbb{T})$ has absolutely convergent Fourier coefficients $\hat{f} \in \ell^1(\mathbb{Z})$, meaning that

$$\sum_{n \in \mathbb{Z}} \left| \hat{f}(n) \right| < \infty,$$

then $f \in C(\mathbb{T})$. This follows from the fact that the Fourier series of f converges uniformly to f by the Weierstrass M-test. We denote the space of functions with absolutely convergent Fourier series by $A(\mathbb{T})$.

- Pointwise divergence of Fourier series. There are continuous functions whose Fourier series converge uniformly but not absolutely, and continuous function whose Fourier series do not do not converge uniformly; in fact, there are continuous functions whose Fourier series diverge pointwise on an arbitrary set of Lebesgue measure zero. If $f \in L^p(\mathbb{T})$ for 1 , then the Fourier series of <math>f converges pointwise a.e. to f (Carlson, Hunt) but there exist functions $f \in L^1(\mathbb{T})$ whose Fourier series diverge pointwise a.e. (Kolmogorov).
- Convolution theorem. If $f, g \in A(\mathbb{T})$, then $fg \in A(\mathbb{T})$ and

$$\widehat{(fg)}(n) = 2\pi \sum_{k \in \mathbb{Z}} \widehat{f}(n-k)\widehat{g}(k).$$

That is, the Fourier transform maps the pointwise product of functions to the discrete convolution product of their Fourier coefficients.

2.4 Weak derivatives and Sobolev spaces

• Weak derivative. A function $f \in L^1(\mathbb{T})$ has weak derivative $g = f' \in L^1(\mathbb{T})$ if

$$\int_{\mathbb{T}} f\phi' \, dx = -\int_{\mathbb{T}} g\phi \, dx \quad \text{for all } \phi \in C^{\infty}(\mathbb{T}).$$

That is, weak derivatives are defined by integration by parts. If $f \in C^1(\mathbb{T})$, then the weak derivative agrees with the pointwise derivative (up to pointwise a.e.-equivalence).

• Fourier coefficients of derivatives. If $f \in L^1(\mathbb{T})$ has weak derivative $f' \in L^1(\mathbb{T})$, then

$$f'(n) = inf(n)$$

• Decay of Fourier coefficients. If $k \in \mathbb{N}$ and $f \in W^{k,1}(\mathbb{T})$, meaning that f has weak derivatives $f', f'', \ldots, f^{(k)} \in L^1(\mathbb{T})$ of order less than or equal to k, then

$$|n|^k \hat{f}(n) \to 0$$
 as $|n| \to \infty$.

This follows from an application of the Riemann-Lebesgue lemma to $f^{(k)}$.

• L^2 -Sobolev spaces. If $0 \le s < \infty$, the Sobolev space $H^s(\mathbb{T})$ consists of all functions $f \in L^2(\mathbb{T})$ such that

$$\sum_{n \in \mathbb{Z}} \left(1 + n^2 \right)^s \left| \hat{f}(n) \right|^2 < \infty.$$

This is a Hilbert space with inner product

$$\langle f,g \rangle_{H^s} = 2\pi \sum_{n \in \mathbb{Z}} \left(1+n^2\right)^s \overline{\widehat{f}(n)}\widehat{g}(n).$$

If $k \in \mathbb{N}$ is an integer, then $H^k(\mathbb{T})$ consists of all functions $f \in L^2(\mathbb{T})$ that have weak derivatives of order less than or equal to k belonging to $L^2(\mathbb{T})$.

• Sobolev embedding. If $f \in H^s(\mathbb{T})$ and s > 1/2, then $f \in C(\mathbb{T})$ and there is a constant C > 0, depending only on s, such that

$$\|f\|_{\infty} \le C \|f\|_{H^s} \qquad \text{for all } f \in H^s(\mathbb{T}).$$

This theorem follows by showing that $\hat{f} \in \ell^1(\mathbb{Z})$ is absolutely convergent so $f \in A(\mathbb{T})$. Roughly speaking, for functions of a single variable, more than one-half an L^2 -derivative implies continuity.

2.5 Periodic distributions

• Test functions. The space $\mathcal{D}(\mathbb{T})$ of periodic test functions consists of all smooth functions $\phi \in C^{\infty}(\mathbb{T})$ with the following notion of convergence of test functions: $\phi_n \to \phi$ in $\mathcal{D}(\mathbb{T})$ if

$$\phi_n^{(k)} \to \phi^{(k)}$$
 uniformly as $n \to \infty$ for every $k = 0, 1, 2, \dots$

Here $\phi^{(k)}$ denotes the *k*th derivative of ϕ .

• Fourier series of test functions. A function $\phi \in L^1(\mathbb{T})$ belongs to $\mathcal{D}(\mathbb{T})$ if and only if its Fourier coefficients are rapidly decreasing,

$$|n|^k \hat{\phi}(n) \to 0$$
 as $|n| \to \infty$ for every $k \in \mathbb{N}$.

This follows from the decay estimates for the Fourier coefficients of smooth functions and the Sobolev embedding theorem. (Note that $\phi \in H^k$ for every $k \in \mathbb{N}$ if and only if $\phi \in C^k$ for every $k \in \mathbb{N}$.) The Fourier series of $\phi \in \mathcal{D}(\mathbb{T})$ converges to ϕ in the sense of test functions.

• Distributions. A distribution T is a continuous linear functional

$$T: \mathcal{D}(\mathbb{T}) \to \mathbb{C}.$$

The space of distributions is denoted $\mathcal{D}'(\mathbb{T})$ and the action of $T \in \mathcal{D}'$ on $\phi \in \mathcal{D}$ by $\langle T, \phi \rangle$. (This duality paring is linear in both arguments, not anti-linear in the first argument like the inner product on a Hilbert space.)

• Convergence of distributions. A sequence of distributions $\{T_n\}$ converges to a distribution T, written $T_n \rightharpoonup T$, if

$$\langle T_n, \phi \rangle \to \langle T, \phi \rangle$$
 as $n \to \infty$ for every $\phi \in \mathcal{D}(\mathbb{T})$.

• Order of a distribution. If $T \in \mathcal{D}'(\mathbb{T})$, there is a non-negative integer k and a constant C such that

$$|\langle T, \phi \rangle| \le C \|\phi\|_{C^k}$$
 for all $\phi \in \mathcal{D}(\mathbb{T})$.

The minimal such integer k is called the order of T.

• Regular distributions. If $f \in L^1(\mathbb{T})$, we define $T_f \in \mathcal{D}'(\mathbb{T})$ by

$$\langle T_f, \phi \rangle = \int_{\mathbb{T}} f \phi \, dx.$$

Any distribution of this form is called a regular distribution. We identify f with T_f and regard $L^1(\mathbb{T})$ as a subspace of $\mathcal{D}'(\mathbb{T})$.

• Distributional derivative. Every $T \in \mathcal{D}(\mathbb{T})$ has a distributional derivative $T' \in \mathcal{D}(\mathbb{T})$ defined by

$$\langle T', \phi \rangle = -\langle T, \phi' \rangle$$

A function $f \in L^1(\mathbb{T})$ has a weak derivative $f' \in L^1(\mathbb{T})$ if and only if its distributional derivative is regular, and then $(T_f)' = T_{f'}$. • Fourier series of distributions. The Fourier coefficients $\hat{T} : \mathbb{Z} \to \mathbb{C}$ of a distribution $T \in \mathcal{D}(\mathbb{T})$ are defined by

$$\hat{T}(n) = \frac{1}{2\pi} \langle T, e^{-inx} \rangle$$

A linear functional on $\mathcal{D}(\mathbb{T})$ is a distribution if and only if its Fourier coefficients have slow growth, meaning that the exists a non-negative integer k and a constant C such that

$$\left|\hat{T}(n)\right| \leq C \left(1+n^2\right)^{k/2}$$
 for all $n \in \mathbb{Z}$.

In that case, the Fourier series of T,

$$\sum_{n\in\mathbb{Z}}\hat{T}(n)e^{inx}$$

converges to T in the sense of distributions.

The delta function. The periodic δ-function supported at 0 is the distribution δ ∈ D'(T) defined by

$$\langle \delta, \phi \rangle = \phi(0)$$

This is a distribution of order zero, but it is not a regular distribution. (It is, in fact, a measure.) Its Fourier series is

$$\delta = \frac{1}{2\pi} \sum_{n \in \mathbb{Z}} e^{inx}.$$