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1 Linear functionals on Hilbert spaces

• Linear functionals. A bounded linear function on a complex Hilbert
spaceH is a bounded scalar-valued linear map φ : H → C. (We replace
C by R for real spaces.)

• Dual space. The space of bounded linear functionals on H is the
topological dual space of H, denoted H∗. The norm of φ : H → C is

‖φ‖H∗ = sup
x 6=0

(
|φ(x)|
‖x‖

)
= sup
‖x‖=1

|φ(x)|

• Reisz representation theorem. If φ ∈ H∗ then there is a unique
x ∈ H such that

φ(y) = 〈x, y〉 for every y ∈ H.

The mapping J : H∗ → H defined by J : φ 7→ x is a conjugate-linear
(i.e. J(λφ) = λ̄Jφ) isometric isomorphism of H∗ onto H. Thus, using
J , we may identify the dual space of a Hilbert space with the Hilbert
space itself.

• Weak convergence. A sequence {xn} in H converges weakly to
x ∈ H, written xn ⇀ x, if

〈xn, y〉 → 〈x, y〉 for every y ∈ H.

• Norm properties of weak convergence. If xn ⇀ x as n → ∞,
then {‖xn‖ : n ∈ N} is bounded and

‖x‖ ≤ lim inf
n→∞

‖xn‖
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i.e. the norm is weakly lower semi-continuous. If

xn ⇀ x and ‖xn‖ → ‖x‖

then xn → x strongly (in norm).

• Necessary and sufficient condition for weak convergence. Let
D be a dense subset of a Hilbert space H. Then xn ⇀ x in H if and
only if {‖xn‖} is bounded and

〈xn, y〉 → 〈x, y〉 for every y ∈ D.

• Banach-Alaoglu theorem. The closed unit ball of a Hilbert space
is weakly compact.

• Minimization problems. Let D be a weakly closed subset of a
Hilbert space H. A real-valued function F : D ⊂ H → R is weakly
lower semi-continuous (wlsc) on D if

F (x) ≤ lim inf
n→∞

F (xn)

for all weakly convergent sequences {xn} in D, where xn ⇀ x as
n→∞. If D is weakly closed and bounded and F is wlsc on D, then
F is bounded from below and attains its infimum on D.

2 Bounded linear operators on a Hilbert space

• Bounded operators. A linear operator A : H → K between Hilbert
spaces H, K is bounded if its operator norm

‖A‖ = sup
x 6=0

(
‖Ax‖K
‖x‖H

)
= sup
‖x‖H=1

‖Ax‖K = sup
‖x‖H=1,‖y‖K=1

|〈Ax, y〉K| .

is finite. The space of bounded linear maps from H, K is denoted
B(H,K). It is a Banach space when equipped with the operator norm.
If H = K, we write B(H,H) = B(H).

• Adjoints. The (Hilbert-space) adjoint of an operator A ∈ B(H,K) is
the bounded operator A∗ ∈ B(K,H) such that

〈Ax, y〉K = 〈x,A∗y〉H for all x ∈ H and all y ∈ K.
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• The algebra B(H). The Banach space B(H) is a C∗-algebra with
respect to the composition product and the adjoint operation:

‖AB‖ ≤ ‖A‖‖B‖, A∗∗ = A, (AB)∗ = B∗A∗.

The commutator of A,B ∈ B(H) is the operator [A,B] ∈ B(H) defined
by [A,B] = AB −BA.

• Kernel-range theorem. If A : H → H is a bounded linear operator
on a Hilbert space H, then the kernel of A

kerA = {x ∈ H : Ax = 0}

is a closed linear subspace of H, and the range of A

ranA = {y ∈ H : y = Ax for some x ∈ H}

is a linear subspace of H, which may or may not be closed. We always
have

H = ranA⊕ kerA∗.

• Self-adjoint operators. A bounded linear operator A : H → H on
a Hilbert space H is self-adjoint if A∗ = A, meaning that

〈Ax, y〉 = 〈x,Ay〉 for all x, y ∈ H.

• Sesquilinear forms. A bounded linear operator A : H → H defines
a sesquilinear form a : H×H → C (meaning that a is conjugate-linear
in the first argument and linear in the second argument) by

a(x, y) = 〈x,Ay〉.

If A is self-adjoint, then a(x, y) = a(y, x), a(x, x) ∈ R, and

‖A‖ = sup
x 6=0

|〈x,Ax〉|
‖x‖2

.

• Normal operators. A bounded linear operator A : H → H on a
Hilbert space H is normal if A∗, A commute, meaning that

A∗A = AA∗.

Self-adjoint and unitary operators on H are normal.
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• Unitary operators. An operator U ∈ B(H,K) is unitary if

U∗U = IH, UU∗ = IK.

In that case, U maps any orthonormal basis of H to an orthonormal
basis of K, and preserves inner-products,

〈Ux,Uy〉K = 〈x, y〉H for all x, y ∈ H,

so U defines an isometric isomorphism of H onto K.

• Orthogonal projections. An orthogonal projection on a Hilbert
space H is a bounded linear operator P ∈ B(H) such that P 2 = P
(projection) and P ∗ = P (self-adjoint or orthogonal).

• Projection theorem. Every orthogonal projection P on H gives a
direct sum decomposition

H =M⊕M⊥, M = ranP, M⊥ = kerP

where M is a closed linear subspace of H. Conversely, every closed
subspace M ⊂ H is associated with an orthogonal projection in this
way.
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