Outline of Bounded Operators: Math 201B

February 24, 2011

1 Linear functionals on Hilbert spaces

- Linear functionals. A bounded linear function on a complex Hilbert space \mathcal{H} is a bounded scalar-valued linear map $\phi : \mathcal{H} \to \mathbb{C}$. (We replace \mathbb{C} by \mathbb{R} for real spaces.)
- **Dual space.** The space of bounded linear functionals on \mathcal{H} is the topological dual space of \mathcal{H} , denoted \mathcal{H}^* . The norm of $\phi : \mathcal{H} \to \mathbb{C}$ is

$$\|\phi\|_{\mathcal{H}^*} = \sup_{x \neq 0} \left(\frac{|\phi(x)|}{\|x\|} \right) = \sup_{\|x\|=1} |\phi(x)|$$

• Reisz representation theorem. If $\phi \in \mathcal{H}^*$ then there is a unique $x \in \mathcal{H}$ such that

$$\phi(y) = \langle x, y \rangle$$
 for every $y \in \mathcal{H}$.

The mapping $J : \mathcal{H}^* \to \mathcal{H}$ defined by $J : \phi \mapsto x$ is a conjugate-linear $(i.e. \ J(\lambda \phi) = \overline{\lambda} J \phi)$ isometric isomorphism of \mathcal{H}^* onto \mathcal{H} . Thus, using J, we may identify the dual space of a Hilbert space with the Hilbert space itself.

• Weak convergence. A sequence $\{x_n\}$ in \mathcal{H} converges weakly to $x \in \mathcal{H}$, written $x_n \rightharpoonup x$, if

$$\langle x_n, y \rangle \to \langle x, y \rangle$$
 for every $y \in \mathcal{H}$.

• Norm properties of weak convergence. If $x_n \to x$ as $n \to \infty$, then $\{||x_n|| : n \in \mathbb{N}\}$ is bounded and

$$\|x\| \le \liminf_{n \to \infty} \|x_n\|$$

i.e. the norm is weakly lower semi-continuous. If

$$x_n \rightharpoonup x$$
 and $||x_n|| \rightarrow ||x|$

then $x_n \to x$ strongly (in norm).

• Necessary and sufficient condition for weak convergence. Let D be a dense subset of a Hilbert space \mathcal{H} . Then $x_n \rightharpoonup x$ in \mathcal{H} if and only if $\{||x_n||\}$ is bounded and

$$\langle x_n, y \rangle \to \langle x, y \rangle$$
 for every $y \in D$.

- **Banach-Alaoglu theorem.** The closed unit ball of a Hilbert space is weakly compact.
- Minimization problems. Let D be a weakly closed subset of a Hilbert space \mathcal{H} . A real-valued function $F: D \subset \mathcal{H} \to \mathbb{R}$ is weakly lower semi-continuous (wlsc) on D if

$$F(x) \le \liminf_{n \to \infty} F(x_n)$$

for all weakly convergent sequences $\{x_n\}$ in D, where $x_n \rightarrow x$ as $n \rightarrow \infty$. If D is weakly closed and bounded and F is wlsc on D, then F is bounded from below and attains its infimum on D.

2 Bounded linear operators on a Hilbert space

• Bounded operators. A linear operator $A : \mathcal{H} \to \mathcal{K}$ between Hilbert spaces \mathcal{H}, \mathcal{K} is bounded if its operator norm

$$||A|| = \sup_{x \neq 0} \left(\frac{||Ax||_{\mathcal{K}}}{||x||_{\mathcal{H}}} \right) = \sup_{||x||_{\mathcal{H}} = 1} ||Ax||_{\mathcal{K}} = \sup_{||x||_{\mathcal{H}} = 1, ||y||_{\mathcal{K}} = 1} |\langle Ax, y \rangle_{\mathcal{K}}|.$$

is finite. The space of bounded linear maps from \mathcal{H} , \mathcal{K} is denoted $\mathcal{B}(\mathcal{H},\mathcal{K})$. It is a Banach space when equipped with the operator norm. If $\mathcal{H} = \mathcal{K}$, we write $\mathcal{B}(\mathcal{H},\mathcal{H}) = \mathcal{B}(\mathcal{H})$.

• Adjoints. The (Hilbert-space) adjoint of an operator $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ is the bounded operator $A^* \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ such that

$$\langle Ax, y \rangle_{\mathcal{K}} = \langle x, A^*y \rangle_{\mathcal{H}}$$
 for all $x \in \mathcal{H}$ and all $y \in \mathcal{K}$.

• The algebra $\mathcal{B}(\mathcal{H})$. The Banach space $\mathcal{B}(\mathcal{H})$ is a C^* -algebra with respect to the composition product and the adjoint operation:

$$||AB|| \le ||A|| ||B||, \qquad A^{**} = A, \qquad (AB)^* = B^*A^*.$$

The commutator of $A, B \in \mathcal{B}(\mathcal{H})$ is the operator $[A, B] \in \mathcal{B}(\mathcal{H})$ defined by [A, B] = AB - BA.

• Kernel-range theorem. If $A : \mathcal{H} \to \mathcal{H}$ is a bounded linear operator on a Hilbert space \mathcal{H} , then the kernel of A

$$\ker A = \{x \in \mathcal{H} : Ax = 0\}$$

is a closed linear subspace of \mathcal{H} , and the range of A

$$\operatorname{ran} A = \{ y \in \mathcal{H} : y = Ax \text{ for some } x \in \mathcal{H} \}$$

is a linear subspace of \mathcal{H} , which may or may not be closed. We always have

$$\mathcal{H} = \operatorname{ran} A \oplus \ker A^*.$$

• Self-adjoint operators. A bounded linear operator $A : \mathcal{H} \to \mathcal{H}$ on a Hilbert space \mathcal{H} is self-adjoint if $A^* = A$, meaning that

$$\langle Ax, y \rangle = \langle x, Ay \rangle$$
 for all $x, y \in \mathcal{H}$.

• Sesquilinear forms. A bounded linear operator $A : \mathcal{H} \to \mathcal{H}$ defines a sesquilinear form $a : \mathcal{H} \times \mathcal{H} \to \mathbb{C}$ (meaning that *a* is conjugate-linear in the first argument and linear in the second argument) by

$$a(x,y) = \langle x, Ay \rangle.$$

If A is self-adjoint, then $a(x,y) = \overline{a(y,x)}$, $a(x,x) \in \mathbb{R}$, and

$$||A|| = \sup_{x \neq 0} \frac{|\langle x, Ax \rangle|}{||x||^2}.$$

• Normal operators. A bounded linear operator $A : \mathcal{H} \to \mathcal{H}$ on a Hilbert space \mathcal{H} is normal if A^* , A commute, meaning that

$$A^*A = AA^*.$$

Self-adjoint and unitary operators on \mathcal{H} are normal.

• Unitary operators. An operator $U \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ is unitary if

$$U^*U = I_{\mathcal{H}}, \qquad UU^* = I_{\mathcal{K}}$$

In that case, U maps any orthonormal basis of \mathcal{H} to an orthonormal basis of \mathcal{K} , and preserves inner-products,

$$\langle Ux, Uy \rangle_{\mathcal{K}} = \langle x, y \rangle_{\mathcal{H}} \quad \text{for all } x, y \in \mathcal{H},$$

so U defines an isometric isomorphism of \mathcal{H} onto \mathcal{K} .

- Orthogonal projections. An orthogonal projection on a Hilbert space \mathcal{H} is a bounded linear operator $P \in \mathcal{B}(\mathcal{H})$ such that $P^2 = P$ (projection) and $P^* = P$ (self-adjoint or orthogonal).
- **Projection theorem.** Every orthogonal projection P on \mathcal{H} gives a direct sum decomposition

$$\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^{\perp}, \qquad \mathcal{M} = \operatorname{ran} P, \quad \mathcal{M}^{\perp} = \ker P$$

where \mathcal{M} is a closed linear subspace of \mathcal{H} . Conversely, every closed subspace $\mathcal{M} \subset \mathcal{H}$ is associated with an orthogonal projection in this way.