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1 Linear functionals on Hilbert spaces

e Linear functionals. A bounded linear function on a complex Hilbert
space H is a bounded scalar-valued linear map ¢ : H — C. (We replace
C by R for real spaces.)

e Dual space. The space of bounded linear functionals on H is the
topological dual space of H, denoted H*. The norm of ¢ : H — C is
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e Reisz representation theorem. If ¢ € H* then there is a unique
x € ‘H such that

o(y) = (z,y) for every y € H.

The mapping J : H* — H defined by J : ¢ — x is a conjugate-linear
(i.e. J(A@) = A\J @) isometric isomorphism of H* onto H. Thus, using
J, we may identify the dual space of a Hilbert space with the Hilbert
space itself.

e Weak convergence. A sequence {z,} in H converges weakly to
x € H, written z,, — x, if

(Xn,y) = (z,y) for every y € H.

e Norm properties of weak convergence. If x, — z as n — oo,
then {||z|| : » € N} is bounded and

|lz]| < liminf ||z,
n—oo
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i.e. the norm is weakly lower semi-continuous. If
xp — x and [|z,] = ||z||
then z,, — x strongly (in norm).

e Necessary and sufficient condition for weak convergence. Let
D be a dense subset of a Hilbert space H. Then z,, — x in H if and
only if {||z,||} is bounded and

(Tn,y) — (T,9) for every y € D.

e Banach-Alaoglu theorem. The closed unit ball of a Hilbert space
is weakly compact.

e Minimization problems. Let D be a weakly closed subset of a
Hilbert space H. A real-valued function F : D C H — R is weakly
lower semi-continuous (wlsc) on D if

F(z) <liminf F(x,)
n—oo
for all weakly convergent sequences {z,} in D, where z, — x as

n — oo. If D is weakly closed and bounded and F' is wlsc on D, then
F is bounded from below and attains its infimum on D.

2 Bounded linear operators on a Hilbert space

e Bounded operators. A linear operator A : H — K between Hilbert
spaces H, K is bounded if its operator norm
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is finite. The space of bounded linear maps from H, K is denoted

B(H,K). It is a Banach space when equipped with the operator norm.
If H =K, we write B(H,H) = B(H).

e Adjoints. The (Hilbert-space) adjoint of an operator A € B(H,K) is
the bounded operator A* € B(K,H) such that

(Az,y)x = (x, A"y)n for all x € H and all y € K.



The algebra B(#). The Banach space B(H) is a C*-algebra with
respect to the composition product and the adjoint operation:

|AB|| < [|AllB),  A™=A, (AB)"=B*A".

The commutator of A, B € B(H) is the operator [A, B] € B(H) defined
by [A, B] = AB — BA.

Kernel-range theorem. If A:H — H is a bounded linear operator
on a Hilbert space H, then the kernel of A

ker A ={z € H: Az =0}
is a closed linear subspace of H, and the range of A
ran A = {y € H :y = Az for some = € H}

is a linear subspace of H, which may or may not be closed. We always
have
H=ran A P ker A*.

Self-adjoint operators. A bounded linear operator A : H — H on
a Hilbert space H is self-adjoint if A* = A, meaning that

(Azx,y) = (z, Ay) for all x,y € H.

Sesquilinear forms. A bounded linear operator A : H — H defines
a sesquilinear form a : H x H — C (meaning that a is conjugate-linear
in the first argument and linear in the second argument) by

a(z,y) = (z, Ay).
If A is self-adjoint, then a(z,y) = a(y, z), a(z,z) € R, and

x, Ax
1A] = sup L&AD)

a0 lzl?

Normal operators. A bounded linear operator A : H — H on a
Hilbert space H is normal if A*, A commute, meaning that

A"A = AA*.

Self-adjoint and unitary operators on H are normal.



e Unitary operators. An operator U € B(H, K) is unitary if
U'U = Iy, UU* = Ik.

In that case, U maps any orthonormal basis of H to an orthonormal
basis of K, and preserves inner-products,

Uz, Up)k = (&,9)n  forall z,y € A,
so U defines an isometric isomorphism of H onto K.

e Orthogonal projections. An orthogonal projection on a Hilbert
space H is a bounded linear operator P € B(#) such that P? = P
(projection) and P* = P (self-adjoint or orthogonal).

e Projection theorem. Every orthogonal projection P on H gives a
direct sum decomposition

H=MeML, M=ranP, M+ =kerP

where M is a closed linear subspace of H. Conversely, every closed
subspace M C H is associated with an orthogonal projection in this
way.



