Remarks on Problem Set 3
Math 201B: Winter 2011

1. Suppose that > > ¢, is a series of complex numbers with partial sums
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The series is Borel summable with Borel sum s if the following limit exists:
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(b) For what complex numbers a € C is the geometric series
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Borel summable? What is its Borel sum? For what ¢ € C is this series
Cesaro summable? Abel summable?

(c) Do you get anything useful from the Borel summation of a Fourier series?

Remarks.

e As (b) illustrates, Borel summation can give the analytic continuation
of a power series outside its radius of convergence, in this case from
the disc |a] < 1 to the half-plane Ra < 1. Roughly speaking, Borel
summation is a more powerful — but cruder — method of summing
divergent series than Abel or Cesaro summation, which can only sum
a power series on the boundary |a| = 1 of its disc of convergence.

e Borel summation has been used to re-sum divergent perturbation series
that arise in quantum field theory and from various PDEs.

e (c) The short answer is no. A longer answer is in the paper by Moore.

2. Let A(T) denote the space of integrable functions whose Fourier coeffi-
cients are absolutely convergent. That is, f € A(T) if
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(a) If f € A(T), show that f € C(T). Also show that f € A(T) if and only
if f = g h for some functions g, h € L*(T).

(b) If f,g € A(T), show that fg € A(T) and express ﬁ in terms of f, g.

Optional question!
(c) Give an example of a function f € C(T) such that f ¢ A(T).

Remarks.

e (a) The space A(T) of functions with absolutely convergent Fourier
series is not so easy to characterize explicitly.

e As (b) shows, A(T) is an algebra with respect to the pointwise prod-
uct. This algebra maps under the Fourier transform to ¢*(Z) with the
discrete convolution product: if f: Z — C, §: Z — C belong to N(Z)
then f % §:7Z — C in ¢1(Z) is defined by

(£+9) (k) = 3 F(k = m)g(n).
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This is dual to the fact that L}(T) is an algebra with respect to the
convolution product, and the Fourier transform maps L!(T) — anal-
ogous to ¢1(Z) — to a sequence subspace of co(Z) — analogous to the
subspace A(T) of C(T), with the pointwise product.

e (c) Continuous functions with non-absolutely convergent Fourier co-
efficients are constructed in Zygmund’s book on Trigonometric Series
c.f. Theorem 4.2 in Chapter V. One example is
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Even though this Fourier series is not absolutely convergent, it con-
verges uniformly to f, and f is not only continuous but Hoélder con-
tinuous with exponent 1/2, meaning that

f(@) = f(y)] < Cla —y|'*.

There are also continuous function whose Fourier series diverge at a
point, or on a set of measure zero, as well as continuous functions
whose Fourier series converge pointwise everywhere but do not con-
verge uniformly c.f. Section 1, Chapter VIII of Zygmund.



3. Let D = {z € C: |z| < 1} denote the unit disc in the complex plane. The
Hardy space H?(D) is the space of functions with a power series expansion
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If F € H%(D), show that
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Show conversely that if F': D — C is a holomorphic function such that
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then F € H?(D).

Remarks.

e More generally, if 0 < p < oo, the Hardy space HP(D) is defined to
be the set of analytic functions F' : D — C that satisfy the following
growth condition at the boundary of D:
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The Hardy space H>°(D) consists of the bounded analytic functions
on D. The only one of these Hardy spaces that is a Hilbert space is
H?(D).

F <’I“6i9) ‘p df < oco.

e For 1 < p < oo, the Hardy spaces are essentially equivalent to LP(T),
but this is no longer true for 0 < p < 1. A great deal of effort in
harmonic analysis has been made to understand the structure of func-
tions in these Hardy spaces, originally by the use of complex-variable
methods and subsequently by the use of real-variable methods (which
extend to functions of more than one variable).



