
Remarks on Problem Set 3
Math 201B: Winter 2011

1. Suppose that
∑∞

n=0 cn is a series of complex numbers with partial sums

sn =
n∑
k=0

ck.

The series is Borel summable with Borel sum s if the following limit exists:

s = lim
x→+∞

e−x

( ∞∑
n=0

snx
n

n!

)
.

(b) For what complex numbers a ∈ C is the geometric series

∞∑
n=0

an

Borel summable? What is its Borel sum? For what a ∈ C is this series
Cesàro summable? Abel summable?

(c) Do you get anything useful from the Borel summation of a Fourier series?

Remarks.

• As (b) illustrates, Borel summation can give the analytic continuation
of a power series outside its radius of convergence, in this case from
the disc |a| < 1 to the half-plane <a < 1. Roughly speaking, Borel
summation is a more powerful — but cruder — method of summing
divergent series than Abel or Cesàro summation, which can only sum
a power series on the boundary |a| = 1 of its disc of convergence.

• Borel summation has been used to re-sum divergent perturbation series
that arise in quantum field theory and from various PDEs.

• (c) The short answer is no. A longer answer is in the paper by Moore.

2. Let A(T) denote the space of integrable functions whose Fourier coeffi-
cients are absolutely convergent. That is, f ∈ A(T) if∑

n∈Z

∣∣∣f̂(n)
∣∣∣ <∞.
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(a) If f ∈ A(T), show that f ∈ C(T). Also show that f ∈ A(T) if and only
if f = g ∗ h for some functions g, h ∈ L2(T).

(b) If f, g ∈ A(T), show that fg ∈ A(T) and express f̂g in terms of f̂ , ĝ.

Optional question!
(c) Give an example of a function f ∈ C(T) such that f /∈ A(T).

Remarks.

• (a) The space A(T) of functions with absolutely convergent Fourier
series is not so easy to characterize explicitly.

• As (b) shows, A(T) is an algebra with respect to the pointwise prod-
uct. This algebra maps under the Fourier transform to `1(Z) with the
discrete convolution product: if f̂ : Z→ C, ĝ : Z→ C belong to `1(Z)
then f̂ ∗ ĝ : Z→ C in `1(Z) is defined by(

f̂ ∗ ĝ
)

(k) =
∑
n∈Z

f̂(k − n)ĝ(n).

This is dual to the fact that L1(T) is an algebra with respect to the
convolution product, and the Fourier transform maps L1(T) — anal-
ogous to `1(Z) — to a sequence subspace of c0(Z) — analogous to the
subspace A(T) of C(T), with the pointwise product.

• (c) Continuous functions with non-absolutely convergent Fourier co-
efficients are constructed in Zygmund’s book on Trigonometric Series
c.f. Theorem 4.2 in Chapter V. One example is

f(x) =
∞∑
n=1

ein logn

n
einx.

Even though this Fourier series is not absolutely convergent, it con-
verges uniformly to f , and f is not only continuous but Hölder con-
tinuous with exponent 1/2, meaning that

|f(x)− f(y)| ≤ C|x− y|1/2.

There are also continuous function whose Fourier series diverge at a
point, or on a set of measure zero, as well as continuous functions
whose Fourier series converge pointwise everywhere but do not con-
verge uniformly c.f. Section 1, Chapter VIII of Zygmund.
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3. Let D = {z ∈ C : |z| < 1} denote the unit disc in the complex plane. The
Hardy space H2(D) is the space of functions with a power series expansion

F (z) =

∞∑
n=0

cnz
n (1)

such that
∞∑
n=0

|cn|2 <∞. (2)

If F ∈ H2(D), show that

‖F‖2H2 = sup
0<r<1

1

2π

∫ 2π

0

∣∣∣F (reiθ)∣∣∣2 dθ <∞.
Show conversely that if F : D → C is a holomorphic function such that

sup
0<r<1

1

2π

∫ 2π

0

∣∣∣F (reiθ)∣∣∣2 dθ <∞
then F ∈ H2(D).

Remarks.

• More generally, if 0 < p < ∞, the Hardy space Hp(D) is defined to
be the set of analytic functions F : D → C that satisfy the following
growth condition at the boundary of D:

sup
0<r<1

∫ 2π

0

∣∣∣F (reiθ)∣∣∣p dθ <∞.
The Hardy space H∞(D) consists of the bounded analytic functions
on D. The only one of these Hardy spaces that is a Hilbert space is
H2(D).

• For 1 < p ≤ ∞, the Hardy spaces are essentially equivalent to Lp(T),
but this is no longer true for 0 < p ≤ 1. A great deal of effort in
harmonic analysis has been made to understand the structure of func-
tions in these Hardy spaces, originally by the use of complex-variable
methods and subsequently by the use of real-variable methods (which
extend to functions of more than one variable).
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