Problem Set 4: Math 201B Due: Friday, January 28

1. Let $D \subset \mathbb{R}^2$ be the unit disc and $f \in C(\partial D)$ a continuous function defined on the unit circle ∂D . Suppose that $u : \overline{D} \to \mathbb{R}$ is a function $u \in C^2(D) \cap C(\overline{D})$ such that

$$\begin{aligned} \Delta u &= 0 & \text{in } D, \\ u &= f & \text{on } \partial D. \end{aligned} \tag{1}$$

(a) Show that

$$\max_{\overline{D}} u = \max_{\partial D} f.$$

HINT. Let $u^{\epsilon}(x,y) = u(x,y) + \epsilon(x^2 + y^2)$ and show that u^{ϵ} cannot have an interior maximum for any $\epsilon > 0$.

(b) Deduce that a solution of (1) is unique and is therefore given by

$$u(r,\theta) = (P_r * f)(\theta)$$

in $0 \le r < 1$ where P_r is the Poisson kernel.

2. Define $f \in L^2(\mathbb{T})$ by

$$f(x) = |x| \qquad \text{for } |x| < \pi.$$

Show that $f \in H^1(\mathbb{T})$ and compute its weak derivative $f' \in L^2(\mathbb{T})$. Is $f' \in H^1(\mathbb{T})$? For what values of s > 0 is it true that $f \in H^s(\mathbb{T})$?

3. Suppose that $f:[0,L] \to \mathbb{R}$ is a smooth function *e.g.* $f \in C^1([0,L])$ such that f(0) = f(L) = 0. Prove that

$$\int_0^L \left[f(x)\right]^2 \, dx \le \left(\frac{L}{\pi}\right)^2 \int_0^L \left[f'(x)\right]^2 \, dx.$$

Show that the constant in this inequality is sharp. Why do you need to assume that f(0) = f(L) = 0? Show that you cannot estimate the L^2 -norm of a smooth, square-integrable function $f : [0, \infty) \to \mathbb{R}$ such that f(0) = 0 in terms of the L^2 norm of its derivative.

4. Suppose that u(x,t) is a solution of the following initial value problem for the heat equation

$$u_t = u_{xx}$$
 $x \in \mathbb{T}, t > 0$
 $u(x,0) = f(x)$ $x \in \mathbb{T}$

where $f \in C(\mathbb{T})$ and

$$u \in C^{2} \left(\mathbb{T} \times (0, \infty) \right) \cap C \left(\mathbb{T} \times [0, \infty) \right).$$

(a) Show that

$$u(x,t) = (\theta_t * f)(x)$$
 for $t > 0$

where

$$\theta_t(x) = \frac{1}{2\pi} \sum_{n \in \mathbb{Z}} e^{-n^2 t} e^{inx}.$$

(b) Show that $u \in C^{\infty} (\mathbb{T} \times (0, \infty))$.