Problem Set 6: Math 201B Due: Friday, February 11

1. Let X be a (real or complex) linear space and $P, Q : X \to X$ projections. (a) Show that I - P is the projection onto ker P along ran P.

(b) The projections P, Q are orthogonal, written $P \perp Q$, if PQ = QP = 0. Show that P + Q is a projection if and only if $P \perp Q$.

(c) If the projections P, Q commute, show that PQ is the projection onto $\operatorname{ran} P \cap \operatorname{ran} Q$ along ker $P + \ker Q$.

(d) Give an example (or examples) to show that P + Q need not be a projection if PQ = 0 but $QP \neq 0$, and PQ need not be a projection if P,Q do not commute.

2. Let $\mathcal{H} = L^2(\mathbb{R})$. For any Lebesgue measurable set $A \subset \mathbb{R}$, define

$$P_A:\mathcal{H}\to\mathcal{H}$$

by $P_A f = \chi_A f$ where χ_A is the characteristic function of A. (We define $P_{\emptyset} = 0$.) Show that P_A is an orthogonal projection. What are its range and kernel? Show that P_A , P_B commute. What is $P_A P_B$? When is $P_A \perp P_B$? What is $P_A + P_B$ in that case?

3. Suppose that \mathcal{H} is a separable Hilbert space with ON basis $\{e_n : n \in \mathbb{N}\}$. Let M be the closed linear span of

$$e_1, e_3, e_5, e_7, \ldots$$

and N the closed linear span of

$$e_1 + \frac{1}{2}e_2, \quad e_3 + \frac{1}{2^2}e_4, \quad e_5 + \frac{1}{2^3}e_6, \quad e_7 + \frac{1}{2^3}e_8 \quad \dots$$

(a) Show that $M \cap N = \{0\}$. If $X = M \oplus N$, show that

$$\overline{X} = \mathcal{H}, \qquad X \neq \mathcal{H}.$$

(Thus, X is an inner-product space when equipped with the \mathcal{H} -inner-product.) (b) Let $P: X \to X$ be the projection of X onto M along N. Show that P is unbounded. **4.** Let $\mathcal{H} = H^1(\mathbb{T})$ denote the Sobolev space of 2π -periodic functions in $L^2(\mathbb{T})$ whose weak derivative belongs to $L^2(\mathbb{T})$ with inner product

$$\langle u,v \rangle_{\mathcal{H}} = \int_{\mathbb{T}} \left(\bar{u}v + \bar{u}'v' \right) \, dx.$$

For $f \in L^2(\mathbb{T})$, define $F : \mathcal{H} \to \mathbb{C}$ by

$$F(v) = \int_{\mathbb{T}} \bar{f} v \, dx.$$

Show that $F \in \mathcal{H}^*$ and find the element $u \in \mathcal{H}$ such that

$$F(v) = \langle u, v \rangle_{\mathcal{H}}.$$

What is $||F||_{\mathcal{H}^*}$?