Problem Set 8: Math 201B Due: Friday, March 4

1. A sequence of bounded linear operators $A_n \in \mathcal{B}(\mathcal{H})$ on a Hilbert space \mathcal{H} is said to converge to an operator $A \in \mathcal{B}(\mathcal{H})$: uniformly if $A_n \to A$ with respect to the operator norm on $\mathcal{B}(\mathcal{H})$; strongly if $A_n x \to Ax$ strongly in \mathcal{H} for every $x \in \mathcal{H}$; weakly if $A_n x \to Ax$ weakly in \mathcal{H} for every $x \in \mathcal{H}$.

(a) Give an example of a sequence of operators that converges strongly but not uniformly.

(b) Give an example of a sequence of operators that converges weakly but not strongly.

2. A subset E of a (real or complex) vector space X is said to be convex if

 $\lambda x + (1 - \lambda)y \in E$ for every $x, y \in E$ and every $0 \le \lambda \le 1$.

(a) Show that a closed (*i.e.* strongly closed), convex subset of a Hilbert space is weakly closed.

(b) Show that every closed, convex subset of a Hilbert space contains a point of minimum norm.