
Final: Math 203B
Winter, 2007
John Hunter

Instructions: There are two parts: attempt every question in Part I, and
choose one question from Part II. Closed book. Give complete proofs. You
may use any standard theorem provided you state it carefully. Good Luck!

Part I

Problem 1. For what values of s ≥ 0 do the following functions

f(x) =
∑
n∈Z

einx

√
1 + n2

, g(x) =
∑
n∈Z

einx−|n|,

belong to Hs(T)? What does the Sobolev imbedding theorem imply about
the continuity and order of continuous differentiability of these functions?

Solution.

• Since ∑
n∈Z

|n|2s

1 + n2
< ∞

for s < 1/2, we have f ∈ Hs(T) for s < 1/2. This condition is not
sufficient for the Sobolev imbedding theorem to imply anything about
the continuity of f .

• Since ∑
n∈Z

|n|2se−2|n| < ∞

for every s ≥ 0, we have g ∈ Hs(T) for every s ≥ 0. The Sobolev
imbedding theorem implies that g ∈ C∞(T).



Problem 2. Suppose that f ∈ L1(R), and for n ∈ N let

fn(x) =

{
f(x) if |x| > 1/n,
0 if |x| ≤ 1/n.

Prove that fn → f as n →∞ with respect to the L1-norm.

Solution.

• For every n ∈ N, we have

|f − fn| ≤ |f | ∈ L1(R).

Since |f − fn| → 0 pointwise almost everywhere on R as n → ∞, the
Lebesgue dominated convergence theorem, implies that

lim
n→∞

∫
|f − fn| dx =

∫
lim

n→∞
|f − fn| dx = 0,

meaning that fn → f in L1(R).



Problem 3. Suppose that P : H → H is a bounded, not necessarily self-
adjoint, projection (meaning that P 2 = P ) and P 6= 0, I. For λ ∈ C, compute
(λI −P )−1 explicitly when it exists, and show that the spectrum of P is the
set {0, 1}. Hint. Consider the series expansion of (λI − P )−1.

Solution.

• For 0 < |λ| < 1, we have

(λI − P )−1 =
1

λ

(
I − 1

λ
P

)−1

=
1

λ

(
I +

1

λ
P +

1

λ2
P 2 +

1

λ3
P 3 + . . .

)
=

1

λ

[
I +

(
1

λ
+

1

λ2
+

1

λ3
+ . . .

)
P

]
=

1

λ
I +

1

λ(λ− 1)
P.

• By direct calculation, using P 2 = P , we have for every λ 6= 0, 1 that

(λI − P )

(
1

λ
I +

1

λ(λ− 1)
P

)
=

(
1

λ
I +

1

λ(λ− 1)
P

)
(λI − P ) = I,

which proves that (λI −P ) is invertible and λ belongs to the resolvent
set of P .

• Since P 6= 0, there exists x ∈ H such that Px 6= 0. Then P (Px) = Px,
so λ = 1 is in the point spectrum of P .

• Since P 6= I, there exists x ∈ H such that Px− x 6= 0. Then

P (Px− x) = 0,

so λ = 0 is in the point spectrum of P .

• It follows that σ(P ) = {0, 1}.



Problem 4. For α ∈ R and n ∈ N define

fn(x) =

{
n−αeinx if |x| ≤ n,
0 if |x| > n,

For what values of α does the sequence (fn) converge in L2(R): (a) strongly;
(b) weakly?

Solution.

• (a) We compute that
‖fn‖2 = 2n1−2α.

Hence, fn → 0 if α > 1/2, while (fn) is unbounded and therefore cannot
converge strongly if α < 1/2.

• If α = 1/2, then for m > n

‖fm − fn‖2 ≥ 2(m− n)m−1 → 2 as m →∞,

so the sequence is not Cauchy and does not converge strongly.

• The sequence converges strongly if and only α > 1/2.

• (b) The sequence converges strongly and therefore weakly to 0 if α >
1/2, and is unbounded and therefore does not converge weakly if α <
1/2.

• If α = 1/2, then an integration by parts shows that if φ ∈ C∞
c (R), then∫

R
φ(x)fn(x) dx → 0 as n →∞.

Since (fn) is bounded and C∞
c (R) is dense in L2(R) it follows that

fn ⇀ 0 as n →∞.

• The sequence converges weakly if and only if α ≥ 1/2.



Part II

Problem 5. Let {en | n ∈ N} be an orthonormal basis of a Hilbert space
H, and define C ⊂ H by

C =

{
x ∈ H |

∑
n∈N

(
1 +

1

n

)2

|〈en, x〉|2 ≤ 1

}
.

(a) Prove that C is a closed, bounded, convex subset of H. (Recall that C
is convex if tx + (1− t)y ∈ C whenever x, y ∈ C and t ∈ [0, 1].)

(b) Prove that C has no element with greatest norm.

Solution.

• (a) If xk ∈ C and xk → x, then

∑
n∈N

(
1 +

1

n

)2

|〈en, x〉|2 = lim
k→∞

∑
n∈N

(
1 +

1

n

)2

|〈en, xk〉|2 ≤ 1,

so x ∈ C, and C is closed.

• If x ∈ C, then

‖x‖2 =
∑
n∈N

|〈en, x〉|2 ≤
∑
n∈N

(
1 +

1

n

)2

|〈en, x〉|2 ≤ 1,

so C is bounded (and contained in the closed unit ball of H).

• The function s : R → R defined by s(x) = x2 is convex, meaning that
if x, y ∈ R and t ∈ [0, 1],

s (tx + (1− t)y) ≤ ts(x) + (1− t)s(y).

It follows that if z = tx + (1− t)y, with x, y ∈ H and t ∈ [0, 1], then

|〈en, z〉|2 = |t〈en, x〉+ (1− t)〈en, y〉|2

≤ (t |〈en, x〉|+ (1− t) |〈en, y〉|)2

≤ t |〈en, x〉|2 + (1− t) |〈en, y〉|2 .



Hence, if x, y ∈ C, then

∑
n∈N

(
1 +

1

n

)2

|〈en, z〉|2 ≤ t
∑
n∈N

(
1 +

1

n

)2

|〈en, x〉|2

+(1− t)
∑
n∈N

(
1 +

1

n

)2

|〈en, y〉|2 ,

≤ 1,

so z ∈ C, and C is convex.

• (b) We have seen that ‖x‖ ≤ 1 if x ∈ C. On the other hand,

xn =
1

1 + 1/n
en ∈ C.

Since ‖xn‖ → 1 as n →∞, it follows that

sup
x∈C

‖x‖ = 1.

• If x ∈ C and ‖x‖ = 1, then

∑
n∈N

{(
1 +

1

n

)2

− 1

}
|〈en, x〉|2

=
∑
n∈N

(
1 +

1

n

)2

|〈en, x〉|2 − ‖x‖2

≤ 0,

which implies that 〈en, x〉 = 0 for every n ∈ N, or x = 0. This contra-
diction proves that C contains no element with norm equal to 1.



Problem 6. Let U : `2(Z) → L2(T) be the unitary map from a complex
sequence c = (cn)n∈Z to the function f : T → C whose sequence of Fourier
coefficients is c:

(Uc)(x) =
1√
2π

∑
n∈Z

cne
inx.

Define the right-shift map S : `2(Z) → `2(Z) by

Sc = b, where c = (cn), b = (bn), and bn = cn−1.

Define the multiplication operator M : L2(T) → L2(T) by

(Mf)(x) = eixf(x).

(a) Show that S = U−1MU .

(b) Determine the spectrum of M , and deduce the spectrum of S. Classify
the spectrum.

Solution.

• (a) We have

(US)c =
1√
2π

∑
n∈Z

cn−1e
inx = eix 1√

2π

∑
n∈Z

cne
inx = (MU)c,

which implies that S = U−1MU .

• (b) If |λ| 6= 1, then (M−λI) is an invertible map on L2(T), with inverse

(M − λI)−1f(x) =
1

eix − λ
f(x),

(eix − λ)−1 is a bounded function on T.

• If |λ| = 1 then the range of the multiplication operator eix − λ is a
proper dense set of L2(T). Thus, the spectrum of M consists of the
unit circle {λ ∈ C | |λ| = 1}, and is entirely continuous.

• Since S is unitarily equivalent to M , it has the same spectrum.


