MIDTERM: SOLUTIONS Math 201B, Winter 2007

Problem 1. Suppose that $\lambda \in \mathbb{C}$ and $\lambda \notin \mathbb{Z}$. Prove that for every $f \in L^2(\mathbb{T})$ there is a unique solution $u \in H^1(\mathbb{T})$ of the differential equation

$$iu' + \lambda u = f.$$

Solution.

• Computing Fourier coefficients, we see that $u \in L^2(\mathbb{T})$ is a solution if and only if

$$i(in)\hat{u}_n + \lambda\hat{u}_n = \hat{f}_n.$$

This equation has a unique solution

$$\hat{u}_n = \frac{\hat{f}_n}{\lambda - n},$$

which is well-defined since $\lambda \notin \mathbb{Z}$.

• For $\lambda \notin \mathbb{Z}$ there exists a constant C such that

$$\left. \frac{n}{\lambda - n} \right| \le C \qquad \text{for all } n \in \mathbb{Z}.$$

It follows that if $f \in L^2(\mathbb{T})$, then

$$\sum_{n \in \mathbb{Z}} n^2 |\hat{u}_n|^2 = \sum_{n \in \mathbb{Z}} \frac{n^2 \left| \hat{f}_n \right|^2}{|\lambda - n|^2} \le C^2 \sum_{n \in \mathbb{Z}} \left| \hat{f}_n \right|^2 = C^2 ||f||_2^2 < \infty.$$

Hence, $u \in H^1(\mathbb{T})$.

Problem 2. If $f \in L^1(\mathbb{R})$, define a function $\hat{f} : \mathbb{R} \to \mathbb{C}$ by

$$\hat{f}(\xi) = \int_{\mathbb{R}} f(x) e^{-ix\xi} dx.$$

Prove that $\hat{f} \in C_b(\mathbb{R})$, meaning that \hat{f} is bounded and continuous.

Solution.

• We have

$$\left|\hat{f}(\xi)\right| = \left|\int_{\mathbb{R}} f(x)e^{-ix\xi} \, dx\right| \le \int_{\mathbb{R}} \left|f(x)e^{-ix\xi}\right| \, dx = \int_{\mathbb{R}} \left|f(x)\right| \, dx = \|f\|_1,$$

so \hat{f} is bounded, with

$$\|f\|_{\infty} \le \|f\|_1.$$

• If $\xi \to \xi_0$, then, by the continuity of $e^{i\theta}$,

$$f(x)e^{-ix\xi} \to f(x)e^{-ix\xi_0}$$
 pointwise for every $x \in \mathbb{R}$.

Moreover,

$$\left|f(x)e^{-ix\xi}\right| \le |f(x)| \in L^1(\mathbb{R}).$$

The Lebesgue dominated convergence theorem therefore implies that

$$\lim_{\xi \to \xi_0} \hat{f}(\xi) = \lim_{\xi \to \xi_0} \int_{\mathbb{R}} f(x) e^{-ix\xi} dx$$
$$= \int_{\mathbb{R}} \lim_{\xi \to \xi_0} \left[f(x) e^{-ix\xi} \right] dx$$
$$= \int_{\mathbb{R}} f(x) e^{-ix\xi_0} dx$$
$$= \hat{f}(\xi_0),$$

so \hat{f} is continuous.

Remark. The function \hat{f} is the Fourier transform of f. In fact, $\hat{f} \in C_0(\mathbb{R})$ if $f \in L^1(\mathbb{R})$, meaning that $\hat{f}(\xi) \to 0$ as $|\xi| \to \infty$. This result, the Riemann-Lebesgue lemma, follows from the density of $C_c^{\infty}(\mathbb{R})$ in $L^1(\mathbb{R})$.

Problem 3. Suppose that $\{\phi_n \in L^2(\mathbb{R}) \mid n \in \mathbb{N}\}$ is an orthonormal set of functions in $L^2(\mathbb{R})$. For $m, n \in \mathbb{N}$, define $\phi_{m,n} : \mathbb{R}^2 \to \mathbb{C}$ by

$$\phi_{m,n}(x,y) = \phi_m(x)\phi_n(y).$$

Prove that $\{\phi_{m,n} \in L^2(\mathbb{R}^2) \mid m, n \in \mathbb{N}\}$ is an orthonormal set in $L^2(\mathbb{R}^2)$.

Solution.

• We have

$$\begin{aligned} \langle \phi_{j,k}, \phi_{m,n} \rangle &= \int_{\mathbb{R}^2} \overline{\phi}_{j,k}(x,y) \phi_{m,n}(x,y) \, dx dy \\ &= \int_{\mathbb{R}^2} \overline{\phi}_j(x) \phi_m(x) \overline{\phi}_k(y) \phi_n(y) \, dx dy. \end{aligned}$$

• Using Fubini's theorem for non-negative functions, we get

$$\int_{\mathbb{R}^2} \left| \overline{\phi}_j(x) \phi_m(x) \overline{\phi}_k(y) \phi_n(y) \right| \, dx dy$$
$$= \int_{\mathbb{R}} \left(\int_{\mathbb{R}} \left| \overline{\phi}_j(x) \phi_m(x) \overline{\phi}_k(y) \phi_n(y) \right| \, dx \right) \, dy$$
$$= \left(\int_{\mathbb{R}} \left| \overline{\phi}_j(x) \phi_m(x) \right| \, dx \right) \left(\int_{\mathbb{R}} \left| \overline{\phi}_k(y) \phi_n(y) \right| \, dy \right)$$

By the Cauchy-Schwartz inequality, and the normalization of the ϕ_n ,

$$\int_{\mathbb{R}} \left| \overline{\phi}_j(x) \phi_m(x) \right| \, dx \le \left(\int_{\mathbb{R}} \left| \phi_j(x) \right|^2 \, dx \right)^{1/2} \left(\int_{\mathbb{R}} \left| \phi_m(x) \right|^2 \, dx \right)^{1/2} = 1.$$

Hence, $\phi_{j,k}\phi_{m,n} \in L^1(\mathbb{R}^2)$, and we can apply Fubini's theorem.

• Using Fubini's theorem and the orthonormality of the ϕ_n in $L^2(\mathbb{R})$, we compute that

$$\begin{aligned} \langle \phi_{j,k}, \phi_{m,n} \rangle &= \int_{\mathbb{R}^2} \overline{\phi}_j(x) \phi_m(x) \overline{\phi}_k(y) \phi_n(y) \, dx dy \\ &= \int_{\mathbb{R}} \left(\int_{\mathbb{R}} \overline{\phi}_j(x) \phi_m(x) \overline{\phi}_k(y) \phi_n(y) \, dx \right) \, dy \\ &= \delta_{j,m} \int_{\mathbb{R}} \overline{\phi}_k(y) \phi_n(y) \, dy \\ &= \delta_{j,m} \delta_{k,m}, \end{aligned}$$

which shows that the $\phi_{m,n}$ are orthonormal in $L^2(\mathbb{R}^2)$.

Problem 4. Suppose that $f, g \in L^2(\mathbb{T})$. Prove that

$$||f * g||_{\infty} \le ||f||_2 \, ||g||_2,$$

where f * g denotes the convolution of f, g and

$$||f||_{\infty} = \sup_{x \in \mathbb{T}} |f(x)|, \qquad ||f||_2 = \left(\int_{\mathbb{T}} |f(x)|^2 \, dx\right)^{1/2}.$$

Prove that $f * g \in C(\mathbb{T})$ is continuous.

Solution.

• By the Cauchy-Schwartz inequality,

$$\begin{aligned} |(f*g)(x)| &= \left| \int_{\mathbb{T}} f(x-y)g(y) \, dy \right| \\ &\leq \left(\int_{\mathbb{T}} |f(x-y)|^2 \, dy \right)^{1/2} \left(\int_{\mathbb{T}} |g(y)|^2 \, dy \right)^{1/2} \\ &= \|f\|_2 \|g\|_2. \end{aligned}$$

Taking the supremum of this inequality over $x \in \mathbb{T}$, we get the result.

• Since the trigonometric polynomials are dense in $L^2(\mathbb{T})$, there are sequences (p_n) , (q_n) of trigonometric polynomials such that

$$||p_n - f||_2 \to 0, \quad ||q_n - g||_2 \to 0 \quad \text{as } n \to \infty.$$

It follows that

$$\begin{aligned} \|(f * g) - (p_n * q_n)\|_{\infty} &\leq \|(f - p_n) * g\|_{\infty} + \|p_n * (g - q_n)\|_{\infty} \\ &\leq \|f - p_n\|_2 \|g\|_2 + \|p_n\|_2 \|g - q_n\|_2 \\ &\to 0 \quad \text{as } n \to \infty. \end{aligned}$$

Hence, f * g is the uniform limit of the continuous functions $p_n * q_n$, so f * g is continuous.

Problem 5. Let M be the linear space of complex sequences (x_n) of the form $(x_1, x_2, x_3, \ldots, x_N, 0, 0, \ldots)$ where $x_n \in \mathbb{C}$, $x_n = 0$ for n > N, for some $N \in \mathbb{N}$, and

$$\sum_{n=1}^{N} x_n = 0.$$

What is the closure \overline{M} of M in $\ell^2(\mathbb{N})$? What is the orthogonal complement M^{\perp} of M in $\ell^2(\mathbb{N})$?

Solution.

- The closure of M is the whole space $\ell^2(\mathbb{N})$, so $M^{\perp} = \{0\}$.
- To show that M is dense in $\ell^2(\mathbb{N})$, suppose that

$$y = (y_1, y_2, y_3, \dots, y_N, 0, 0, \dots)$$

is any terminating complex sequence, with

$$\sum_{n=1}^{N} y_n = c.$$

For any $K \in \mathbb{N}$, define $x = (x_n)$ by

$$x_n = \begin{cases} y_n & \text{if } 1 \le n \le N, \\ -c/K & \text{if } N+1 \le n \le N+K, \\ 0 & \text{if } n > N+K. \end{cases}$$

Then

$$\sum_{n=1}^{N+K} x_n = 0,$$

so $x \in M$.

• We compute that

$$||x - y||^2 = K \frac{|c|^2}{K^2} = \frac{|c|^2}{K} \to 0 \text{ as } K \to \infty.$$

Therefore, the closure of M contains all terminating sequences. Since the terminating sequences are dense in $\ell^2(\mathbb{N})$, we have $\overline{M} = \ell^2(\mathbb{N})$.