FINAL: MATH 203B Winter, 2003 John Hunter

Instructions: Closed book. Give complete proofs. You may use any standard theorem provided you state it carefully. Good Luck!

Problem 1. (a) Define the Fourier coefficients and Fourier series of a 2π -periodic function $f \in L^2(\mathbb{T})$.

(b) Compute the Fourier coefficients of the 2π -periodic function such that

$$f(x) = x, \qquad |x| < \pi.$$

For what real values of $s \ge 0$ is it true that $f \in H^s(\mathbb{T})$?

(c) State Parseval's theorem, and deduce that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

Problem 2. Use Fourier series to solve the linearized KdV equation,

$$u_t = u_{xxx},$$

$$u(x,0) = f(x)$$

where $u(\cdot, t) \in L^2(\mathbb{T})$. Show that the solution operators form a stronglycontinuous one-parameter unitary group in $L^2(\mathbb{T})$.

Problem 3. Let $A : \mathcal{H} \to \mathcal{H}$ be a bounded linear operator on a Hilbert space \mathcal{H} . A closed linear subspace \mathcal{M} of \mathcal{H} is said to be a *reducing subspace* for A if both \mathcal{M} and \mathcal{M}^{\perp} are invariant subspaces of A, meaning that $A(\mathcal{M}) \subset \mathcal{M}$ and $A(\mathcal{M}^{\perp}) \subset \mathcal{M}^{\perp}$. Show that \mathcal{M} is a reducing subspace for A if and only if PA = AP where P is the orthogonal projection onto \mathcal{M} .

Problem 4. (a) Define weak convergence in a Hilbert space.

(b) Let $\{\mathbf{e}_n \mid n \in \mathbb{N}\}$ be an orthonormal set in a Hilbert space, and define

$$\mathbf{x}_n = [1 + (-1)^n] \mathbf{e}_n, \quad \mathbf{y}_n = \sum_{k=1}^n \frac{1}{\sqrt{k}} \mathbf{e}_k, \quad \mathbf{z}_n = (-1)^n \sum_{k=1}^n \frac{1}{k} \mathbf{e}_k.$$

For each of the sequences (\mathbf{x}_n) , (\mathbf{y}_n) , (\mathbf{z}_n) say if it converges weakly and find the weak limit if it exists.

Problem 5. Let $K: L^2(0,1) \to L^2(0,1)$ be the integral operator defined by

$$Ku(x) = \int_0^1 e^{x-y} u(y) \, dy.$$

(a) Find the range of K. Is the range of K closed? Is K compact?

(b) Compute the adjoint operator K^* , and find its kernel.

(c) Verify explicitly that Ku = f is solvable if and only if $f \perp \ker K^*$.

Problem 6. State the spectral theorem for compact self-adjoint operators. If A is a compact self-adjoint operator with nonnegative eigenvalues, prove that there is an operator B such that $B^2 = A$.