Problem Set 6 Math 201B, Winter 2007 Due: Friday, Feb 23

Problem 1. Consider the Schrödinger equation on the circle,

$$iu_t = u_{xx},$$
 $x \in \mathbb{T}, t \in \mathbb{R},$
 $u(x,0) = f(x),$ $x \in \mathbb{T},$

where $u : \mathbb{T} \times \mathbb{R} \to \mathbb{C}$, $f : \mathbb{T} \to \mathbb{C}$ and the derivatives are interpreted in an appropriate sense.

(a) Solve for u(x,t) by the use of Fourier series. If $U(t) = u(\cdot,t) \in L^2(\mathbb{T})$, show that

$$U(t) = T(t)f$$

where $T(t) : L^2(\mathbb{T}) \to L^2(\mathbb{T})$ is a bounded linear operator, defined for all $t \in \mathbb{R}$.

(b) Show that T(t) is a unitary operator, meaning that for all $f, g \in L^2(\mathbb{T})$,

$$\langle T(t)f, T(t)g \rangle = \langle f, g \rangle.$$

(c) Briefly compare the qualitative properties (smoothing, reversiblility, longtime behavior) of the Schrödinger equation with those of the heat equation.

Problem 2. (a) Suppose that P, Q are orthogonal projections on a Hilbert space. Prove that PQ = 0 if and only if ran $P \perp \operatorname{ran} Q$.

(b) Suppose that $\{P_1, P_2, \ldots, P_n\}$ is a family of orthogonal projections on a Hilbert space, and $P_jP_k = 0$ for $j \neq k$. Prove that $P_1 + P_2 + \ldots + P_n$ is an orthogonal projection.

(c) Suppose that $\{P_k \mid k \in \mathbb{N}\}$ is a countably-infinite family of orthogonal projections on a Hilbert space \mathcal{H} such that

$$\bigoplus_{k\in\mathbb{N}}\operatorname{ran} P_k = \mathcal{H}, \qquad P_j P_k = 0 \quad \text{for } j \neq k.$$

Prove that for every $x \in \mathcal{H}$

$$\sum_{k=1}^{\infty} P_k x = x$$

where the series converges strongly (i.e. with respect to the norm) in \mathcal{H} . Is it true or false that

$$\sum_{k=1}^{\infty} P_k = I,$$

where the series converges with respect to the operator norm on $\mathcal{B}(\mathcal{H})$?

Problem 3. (a) Suppose that \mathcal{H}_1 , \mathcal{H}_2 are Hilbert spaces. Define $\mathcal{H}_1 \oplus \mathcal{H}_2$ as the linear space of ordered pairs

$$\mathcal{H}_1 \oplus \mathcal{H}_2 = \{ (x_1, x_2) \mid x_1 \in \mathcal{H}_1, \ x_2 \in \mathcal{H}_2 \},\$$

with the inner product of $x, y \in \mathcal{H}_1 \oplus \mathcal{H}_2$, with $x = (x_1, x_2), y = (y_1, y_2)$, defined by

$$\langle x, y \rangle_{\mathcal{H}_1 \oplus \mathcal{H}_2} = \langle x_1, y_1 \rangle_{\mathcal{H}_1} + \langle x_2, y_2 \rangle_{\mathcal{H}_2}$$

Prove that $\mathcal{H}_1 \oplus \mathcal{H}_2$ is a Hilbert space.

(b) Suppose that $\{\mathcal{H}_{\alpha} \mid \alpha \in A\}$ is an arbitrary indexed family of Hilbert spaces. Define

$$\bigoplus_{\alpha \in A} \mathcal{H}_{\alpha} = \left\{ (x_{\alpha})_{\alpha \in A} \mid x_{\alpha} \in \mathcal{H}_{\alpha}, \quad \sum_{\alpha \in A} \|x_{\alpha}\|^{2} < \infty \right\},\$$

with the inner product of

$$x = (x_{\alpha}) \in \bigoplus_{\alpha \in A} \mathcal{H}_{\alpha}, \qquad y = (y_{\alpha}) \in \bigoplus_{\alpha \in A} \mathcal{H}_{\alpha}$$

defined by

$$\langle x, y \rangle = \sum_{\alpha \in A} \langle x_{\alpha}, y_{\alpha} \rangle$$

Prove that $\bigoplus_{\alpha \in A} \mathcal{H}_{\alpha}$ is a Hilbert space.