Solutions: Problem Set 1 Math 201B, Winter 2007

Problem 1. Suppose that X is a linear space with inner product (\cdot, \cdot) . If $x_n \to x$ and $y_n \to y$ as $n \to \infty$, prove that $(x_n, y_n) \to (x, y)$ as $n \to \infty$.

Solution.

• Using the Cauchy-Schwarz and triangle inequalities, we have

$$\begin{aligned} |(x_n, y_n) - (x, y)| &\leq |(x_n - x, y_n)| + |(x, y_n - y)| \\ &\leq ||x_n - x|| ||y_n|| + ||x|| ||y_n - y|| \\ &\leq ||x_n - x|| (||y_n - y|| + ||y||) + ||x|| ||y_n - y|| \\ &\leq ||x_n - x|| ||y_n - y|| + ||x_n - x|| ||y|| + ||x|| ||y_n - y||. \end{aligned}$$

Since $||x_n - x|| \to 0$, $||y_n - y|| \to 0$ as $n \to \infty$, we see that

 $(x_n, y_n) \to (x, y)$ as $n \to \infty$.

Problem 2. (a) Consider the linear space C([0, 1]) equipped with the L^1 -norm,

$$||f||_1 = \int_0^1 |f(x)| \, dx$$

Prove that there is no inner product (\cdot, \cdot) on C([0, 1]) such that

$$||f||_1 = \sqrt{(f,f)}.$$

(b) Suppose that X is a normed linear space (over \mathbb{C}) whose norm $\|\cdot\|$ satisfies the parallelogram law. Define $(\cdot, \cdot) : X \times X \to \mathbb{C}$ by

$$(x,y) = \frac{1}{4} \left\{ \|x+y\|^2 - \|x-y\|^2 - i\|x+iy\|^2 + i\|x-iy\|^2 \right\}.$$

Prove that (\cdot, \cdot) is an inner product on X such that $||x|| = \sqrt{(x, x)}$.

Solution.

• (a) Consider, for example, f(x) = 1 and g(x) = 2x. Then

$$||f||_1 = 1, \qquad ||g||_1 = 1,$$

while

$$||f - g||_1 = \int_0^1 |1 - 2x| \, dx = \frac{1}{2},$$

$$||f + g||_1 = \int_0^1 (1 + 2x) \, dx = 2.$$

Thus

$$||f - g||_1^2 + ||f + g||_1^2 = \frac{17}{4}, \qquad 2\left(||f||_1^2 + ||g||_1^2\right) = 4,$$

so the norm does not satisfy the parallelogram law. Hence it is not obtained from an inner product.

• (b) Note that we may write the expression for (\cdot, \cdot) as

$$(x,y) = \frac{1}{4} \sum_{k=0}^{3} i^{-k} \left\| x + i^{k} y \right\|^{2}$$

• It follows immediately from the definition that

$$(x,x) = ||x||^2 \ge 0, \qquad (y,x) = \overline{(x,y)}.$$

So the main thing we need to prove is that (x, y) is linear in y.

• Using the parallelogram law, we find for any $x, y, x \in X$ that

$$\begin{aligned} \|x+y+2i^{k}z\|^{2} + \|x-y\|^{2} \\ &= \|(x+i^{k}z) + (y+i^{k}z)\|^{2} + \|(x+i^{k}z) - (y+i^{k}z)\|^{2} \\ &= 2\|x+i^{k}z\|^{2} + 2\|y+i^{k}z\|^{2}. \end{aligned}$$

Multiplying this equation by i^{-k} , summing the result over $0 \le k \le 3$, using the fact that $\sum_{k=0}^{3} i^{-k} = 0$, and using the definition of (\cdot, \cdot) , we get

$$(x + y, 2z) = 2(x, z) + 2(y, z).$$

• Setting y = 0 in this equation, and using the fact immediate from the definition that (0, z) = 0, we get (x, 2z) = 2(x, z). It then follows that

$$(x + y, z) = (x, z) + (y, z).$$

Since $(y, x) = \overline{(x, y)}$, we also get

$$(x, y + z) = (x, y) + (x, z).$$

• Repeated application of this result implies that for any $m \in \mathbb{N}$,

$$(x,my)=m\left(x,y\right) .$$

It follows that for any $m, n \in \mathbb{N}$,

$$n\left(x,\frac{m}{n}y\right) = (x,my) = m\left(x,y\right),$$

 \mathbf{SO}

$$\left(x,\frac{m}{n}y\right) = \frac{m}{n}\left(x,y\right).$$

• Finally, using the density of the rationals in the reals, the continuity of the norm, and the immediate properties

$$(x, -y) = -(x, y),$$
 $(x, iy) = i(x, y),$

we conclude that

$$(x, \lambda y) = \lambda (x, y)$$

for all $\lambda \in \mathbb{C}$ This proves that (\cdot, \cdot) defines an inner product.

Remark. According to P. Lax in *Functional Analysis*, this observation is due to von Neumann.

Problem 3. Let M be a linear subspace of a Hilbert space \mathcal{H} . Prove that $M^{\perp\perp} = \overline{M}$.

Solution.

- If $x \in M$ then $\langle x, y \rangle = 0$ for all $y \in M^{\perp}$, so $x \perp M^{\perp}$. It follows that $M \subset M^{\perp \perp}$.
- Since $M^{\perp\perp}$ is an orthogonal complement, it is a closed linear subspace, so

$$\overline{M} \subset M^{\perp \perp}.$$

• If $x \in \mathcal{H}$ then, by the projection theorem, we may write x = y + z where $y \in \overline{M}, z \in M^{\perp}$. If $x \in M^{\perp \perp}$, then $\langle x, z \rangle = 0$, so $\langle y, z \rangle + \langle z, z \rangle = 0$. Since $M^{\perp} = \overline{M}^{\perp}$, we have $\langle y, z \rangle = 0$, so $\langle z, z \rangle = 0$. Hence z = 0 and $x = y \in \overline{M}$. It follows that

$$M^{\perp\perp} \subset \overline{M}.$$

• Combining these results, we get $M^{\perp \perp} = \overline{M}$.

Remark. The same argument shows that if $E \subset \mathcal{H}$ is any subset, then $E^{\perp\perp} = [E]$, where [E] is the closed linear span of E.

Problem 4. Consider C([0, 1]) equipped with the sup-norm, and define the closed linear subspace

$$M = \left\{ g \in C([0,1]) \mid g(0) = 0, \int_0^1 g(x) \, dx = 0 \right\}.$$

Let $f \in C([0,1]) \setminus M$ be the function f(x) = x. Prove that

$$d(f, M) = \inf_{g \in M} ||f - g||_{\infty} = \frac{1}{2},$$

but that the infimum is not attained for any $g \in M$. (Meaning that there is no "closest" element to f in M.)

Solution.

- We consider real-valued functions for simplicity.
- We have for all $x \in [0, 1]$ that

$$f(x) - g(x) \le ||f - g||_{\infty}.$$

Integrating this equation with respect to x, we get

$$\int_0^1 f(x) \, dx - \int_0^1 g(x) \, dx \le \|f - g\|_\infty$$

Hence, if f(x) = x and $g \in M$ so $\int_0^1 g(x) dx = 0$, then

$$\frac{1}{2} \le \|f - g\|_{\infty}.$$

It follows that $d(f, M) \ge 1/2$.

• For sufficiently small $\epsilon > 0$, define the function

$$g^{\epsilon}(x) = \begin{cases} -kx & \text{if } 0 \le x \le \delta, \\ x - 1/2 - \epsilon & \text{if } \delta < x \le 1, \end{cases}$$

where we choose $-k\delta = \delta - 1/2 - \epsilon$ to ensure the continuity of g^{ϵ} at $x = \delta > 0$ and

$$\frac{1}{2}k\delta\left(\frac{1}{2}+\epsilon\right) = \frac{1}{2}\left(\frac{1}{2}-\epsilon\right)^2$$

to ensure that the integral of g^{ϵ} is zero. Explicitly,

$$\delta = \frac{2\epsilon}{1/2 + \epsilon}, \qquad k = \frac{(1/2 - \epsilon)^2}{2\epsilon}.$$

Then $g^{\epsilon} \in M$ and $\|f - g^{\epsilon}\|_{\infty} = 1/2 + \epsilon \to 1/2$ as $\epsilon \to 0^+$.

- It follows that $d(f, M) \leq 1/2$, so d(f, M) = 1/2.
- Suppose, for contradiction, that the infimum is attained, and $g \in M$ is such that $||f g||_{\infty} = 1/2$. Then

$$g(x) - f(x) \ge -\frac{1}{2}$$
 for all $x \in [0, 1]$.

Thus, writing

$$h(x) = g(x) - x + \frac{1}{2},$$

we see that $h \ge 0$.

• Since $\int_0^1 g(x) dx = 0$, we have

$$\int_0^1 h(x) \, dx = 0.$$

However, since g(0) = 0, we have h(0) = 1/2. Since h is continuous there is an interval $[0, \delta]$ of width $\delta > 0$ on which $h \ge 1/4$. Hence, since h is nonnegative,

$$\int_0^1 h(x) \, dx \ge \int_0^\delta h(x) \, dx \ge \frac{\delta}{4} > 0.$$

This contradiction proves that the infimum is not attained.

Problem 5. We denote the Hölder semi-norm with exponent 1/2 and the L^2 -norm of a function $f:[0,1] \to \mathbb{R}$ by

$$[f] = \sup_{x \neq y \in [0,1]} \frac{|f(x) - f(y)|}{|x - y|^{1/2}}, \qquad \|f\|_2 = \left(\int_0^1 |f(x)|^2 \, dx\right)^{1/2}$$

.

We denote the sup-norm of f by $||f||_{\infty}$.

(a) If f is continuously differentiable on [0, 1], with derivative f', prove that

 $[f] \le \|f'\|_2.$

(b) Given R > 0, let

 $\mathcal{F} = \{f : [0,1] \to \mathbb{R} \mid f \text{ is continuously differentiable}, \|f\|_2 \leq R, \|f'\|_2 \leq R\}$ Prove that \mathcal{F} is a precompact subset of C([0,1]) equipped with the sup-norm.

Solution.

• (a) By the fundamental theorem of calculus,

$$f(x) - f(y) = \int_y^x f'(t) \, dt.$$

The Cauchy-Schwarz inequality implies that

$$\begin{aligned} \left| \int_{y}^{x} f'(t) \, dt \right| &= \left| \int_{y}^{x} 1 \cdot f'(t) \, dt \right| \\ &\leq \left(\int_{y}^{x} 1 \, dt \right)^{1/2} \left(\int_{y}^{x} \left[f'(t) \right]^{2} \, dt \right)^{1/2} \\ &\leq |x - y|^{1/2} \left(\int_{0}^{1} \left[f'(t) \right]^{2} \, dt \right)^{1/2} \\ &\leq |x - y|^{1/2} \| f' \|_{2}. \end{aligned}$$

Hence for all $0 \le x \ne y \le 1$, we have

$$\frac{|f(x) - f(y)|}{|x - y|^{1/2}} \le ||f'||_2.$$

Taking the supremum over $x \neq y$, we get $[f] \leq ||f'||_2$.

- (b) Given $\epsilon > 0$, let $\delta = \epsilon^2/R^2$. If $f \in \mathcal{F}$ and $|x y| < \delta$, then $|f(x) f(y)| < \epsilon$, so the family \mathcal{F} is equicontinuous.
- It follows from (a) that if $f \in \mathcal{F}$, then

$$|f(x) - f(y)| \le R$$

for all $x, y \in [0, 1]$. Hence,

$$|f(x)| \le |f(x) - f(y)| + |f(y)| \le R + |f(y)|.$$

Integrating this equation over [0,1] with respect to y, we get for every $x \in [0,1]$ that

$$|f(x)| \le R + \int_0^1 |f(y)| \, dy.$$

By the Cauchy-Schwarz inequality if $f \in \mathcal{F}$, then

$$\int_0^1 |f(y)| \, dy = \int_0^1 1 \cdot |f(y)| \, dy \le \left(\int_0^1 1^2 \, dy\right)^{1/2} \left(\int_0^1 |f(y)|^2 \, dy\right)^{1/2} \le R$$

Thus, $|f(x)| \leq 2R$, so $||f||_{\infty} \leq 2R$ and \mathcal{F} is bounded.

• The Arzelà-Ascoli theorem implies that \mathcal{F} is a precompact subset of C([0,1]).