
Solutions: Problem Set 3
Math 201B, Winter 2007

Problem 1. Prove that an infinite-dimensional Hilbert space is a separable
metric space if and only if it has a countable orthonormal basis.

Solution.

• If H is a finite-dimensional Hilbert space with orthonormal basis

{en | 1 ≤ n ≤ d},

then

D =

{
d∑

n=1

cnen | cn = qn + irn with qn, rn ∈ Q

}
is a countable dense subset of H.

• If H is an infinite-dimensional Hilbert space with countable orthonor-
mal basis {en | n ∈ N}, then

D =

{
N∑

n=1

cnen | N ∈ N, cn = qn + irn with qn, rn ∈ Q

}
is a countable dense subset. Thus, H is separable if it has a countable
orthonormal basis.

• Suppose that H has an uncountable orthonormal basis,

E = {eα | α ∈ A} ,

and let D be a dense subset of H.

• The orthonormality of E implies that if α 6= β, then

‖eα − eβ‖2 = ‖eα‖2 + ‖eβ‖2 = 2.

The open balls B√
2/2(eα) are therefore disjoint, and, since D is dense,

each ball contains at least one point xα ∈ D, say. The map α 7→ xα is
a one-to-one map of A into D, so the cardinality of D is greater than
or equal to the cardinality of A. It follows that no dense subset of H
is countable, so H is not separable.



Problem 2. Prove that if M is a dense linear subspace of a separable Hilbert
space H, then H has an orthonormal basis consisting of elements in M .

Solution.

• If H is finite-dimensional, then every linear subspace is closed. Thus,
the only dense linear subspace of H is H itself, and the result follows
from the fact that H has an orthonormal basis.

• Suppose that H is infinite-dimensional. Since H is separable, it has a
countable dense subset {xn | n ∈ N}, which need not be a subset of M .
Since M is dense in H, for each n ∈ N, there exists a sequence (xmn)
in M such that xmn → xn as m → ∞. The set {xmn | m, n ∈ N} is
then a countable subset of M that is dense in H.

• Let D be a subset of M that is dense in H, and let B = {xn | n ∈ N}
be a maximal linearly independent subset of D. Then the linear span
of B, meaning all finite linear combinations of elements of B, contains
D so it is dense in H. The closed linear span of B is therefore equal to
H.

• Gram-Schmidt orthonormalization of B gives an orthonormal set

E = {en | n ∈ N}

whose closed linear span is equal to that of B, meaning that E is an
orthonormal basis of H. Moreover, since each xn ∈ M and each en ∈ E
is a finite linear combination of {x1, . . . , xn}, it follows that en ∈ M .
Thus, E is an orthonormal basis of H consisting of elements of M .



Problem 3. Define the Legendre polynomials Pn by

Pn(x) =
1

2nn!

dn

dxn

(
x2 − 1

)n
.

(a) Compute the first four Legendre polynomials, P0(x), P1(x), P2(x), P3(x).

(b) Show that the Legendre polynomials are orthogonal in L2([−1, 1]).

(c) Show that the Legendre polynomials are obtained by Gram-Schmidt or-
thogonalization of the monomials {1, x, x2, . . .} in L2([−1, 1]).

(d) Show that ∫ 1

−1

Pn(x)2 dx =
2

2n + 1
.

(e) Show that the Legendre polynomial Pn is an eigenfunction of the differ-
ential operator

L = − d

dx

(
1− x2

) d

dx

with eigenvalue λn = n(n + 1), meaning that

LPn = λnPn.

(f) Compute the polynomial q(x) of degree 2 that is ‘closest’ to ex on [−1, 1],
in the sense that∫ 1

−1

|ex − q(x)|2 dx = min

{∫ 1

−1

|ex − f(x)|2 dx | f(x) = ax2 + bx + c

}
.

Solution.

• (a) The first few Legendre polynomials are

P0(x) = 1, P1(x) = x, P2(x) =
3

2
x2 − 1

2
,

P3(x) =
5

2
x3 − 3

2
x, P4(x) =

35

8
x4 − 15

4
x2 +

3

8
.

• To prove that Pm is orthogonal to Pn, where we may assume m < n
without loss of generality, it suffices to prove that xm is orthogonal to
Pn for every m < n. It then follows by linearity that every polynomial
of degree m < n is orthogonal to Pn, including, in particular, Pm.



• Integrating by parts m-times, we compute that

〈xm, Pn〉 =
1

2nn!

∫ 1

−1

xm dn

dxn

(
x2 − 1

)n
dx

=
(−1)m

2nn!

∫ 1

−1

dm

dxm
(xm)

dn−m

dxn−m

(
x2 − 1

)n
dx

=
(−1)mm!

2nn!

[
dn−m−1

dxn−m−1

(
x2 − 1

)n
]1

−1

= 0.

All of the boundary terms vanish at x = ±1 because, for 1 ≤ k ≤ n,
the polynomial

dn−k

dxn−k

(
x2 − 1

)n

has a factor (x2 − 1)k. Hence xm ⊥ Pn for m < n, and Pm ⊥ Pn for
m 6= n.

• (c) The linear subspace of polynomials of degree n has dimension n+1.
The orthogonal complement of the polynomials of degree n− 1 in the
space of polynomials of degree n is equal to 1, and therefore {Pn}
is a basis of the orthogonal complement. The Gram-Schmidt orthog-
onalization of the monomials gives a polynomial of degree n in this
complement, so it gives the Legendre polynomials up to normalization.

• (d) Integrating by parts as in (a), we compute that

〈Pn, Pn〉 =
1

(2nn!)2

∫ 1

−1

dn

dxn

(
x2 − 1

)n dn

dxn

(
x2 − 1

)n
dx

=
(−1)n

(2nn!)2

∫ 1

−1

(
x2 − 1

)n d2n

dx2n

(
x2 − 1

)n
dx

=
(−1)n(2n)!

(2nn!)2

∫ 1

−1

(
x2 − 1

)n
dx.

Using integration by parts again, we get∫ 1

−1

(
x2 − 1

)n
dx =

∫ 1

−1

(x− 1)n (x + 1)n dx



= − n

n + 1

∫ 1

−1

(x− 1)n−1 (x + 1)n+1 dx

=
(−1)nn(n− 1) . . . 1

(n + 1)(n + 2) . . . (2n)

∫ 1

−1

(x + 1)2n dx

=
(n!)222n+1

(2n)!(2n + 1)
.

Using this integral in the expression for the inner product of Pn, and
simplifying the result we get

‖Pn‖2 = 〈Pn, Pn〉 =
2

2n + 1

• (e) We write D = d/dx. Leibnitz’s rule for the nth derivative of a
product gives

Dn(fg) =
n∑

k=0

(
n

k

)
Dkf ·Dn−kg.

In particular, since Dkxm = 0 for k > m,

Dn(xf) = xDnf + nDn−1f,

Dn
(
x2f

)
= x2Dnf + 2nxDn−1f + n(n− 1)Dn−2f.

• Let u(x) = (x2 − 1)n. Then(
x2 − 1

)
Du = 2nxu.

We apply Dn+1 to this equation, and use Leibnitz’s rule to expand the
derivatives, which gives(

x2 − 1
)
Dn+2u + (n + 1) · 2xDn+1u + (n + 1)nDnu

= 2nxDn+1u + 2n(n + 1)Dnu.

After simplification we obtain that(
x2 − 1

)
Dn+2u + 2xDn+1u− n(n + 1)Dnu = 0,

which implies that(
x2 − 1

)
D2Pn + 2xDPn − n(n + 1)Pn = 0.

This equation is equivalent to LPn = λnPn.



• (f) By the projection theorem, the closest polynomial of degree N to
f ∈ L2([−1, 1]) is the one such that the error f − q is orthogonal to the
linear space of polynomials of degree N , meaning that

q =
N∑

n=1

cnPn

where the {cn | n = 0, 1, 2, . . .} are the Fourier coefficients of f with
respect to the Legendre polynomials {Pn | n = 0, 1, 2, . . .},

cn =
〈Pn, f〉
‖Pn‖2

.

• If f(x) = ex, then we compute that

〈P0, f〉 =

∫ 1

−1

1 · ex dx

= [ex]1−1

= e− 1

e
,

〈P1, f〉 =

∫ 1

−1

xex dx

= [xex − ex]1−1

=
2

e
,

〈P2, f〉 =

∫ 1

−1

(
3

2
x2 − 1

2

)
ex dx

=

[
3

2
x2ex − 3xex + 3ex − 1

2
ex

]1

−1

= e− 7

e
.

Using the normalization of the Legendre polynomials from (d), we find
that the closest quadratic polynomial q to ex in L2([−1, 1]) is

q(x) =
1

2

(
e− 1

e

)
+

3

2

(
2

e

)
x +

5

2

(
e− 7

e

) (
3

2
x2 − 1

2

)
= −3

4

(
e− 11

e

)
+

3

e
x +

15

4

(
e− 7

e

)
x2.



Problem 4. Define the Hermite polynomials Hn by

Hn(x) = (−1)nex2 dn

dxn

(
e−x2

)
.

(a) Define

φn(x) = e−x2/2Hn(x).

Show that {φn | n = 0, 1, 2, . . .} is an orthogonal set in L2(R).

(b) Show that the nth Hermite function φn is an eigenfunction of the linear
operator

H = − d2

dx2
+ x2

with eigenvalue
λn = 2n + 1.

Solution.

• (a) It is sufficient to show that φn is orthogonal to e−x2/2xm for each
m < n, since then φn is orthogonal to every function of the form
e−x2/2pm, where pm is a polynomial of degree m < n, and hence in
particular to φm.

• Integrating by parts m-times, and using the fact that p e−x2/2 → 0 as
|x| → ∞ for every polynomial p, we compute that〈

e−x2/2xm, φn

〉
= (−1)n

∫ ∞

−∞
xm dn

dxn

(
e−x2

)
dx

= (−1)m+nm!

∫ ∞

−∞

dn−m

dxn−m

(
e−x2

)
dx

= (−1)m+nm!

[
dn−m−1

dxn−m−1

(
e−x2

)]∞
−∞

= 0,

which proves the result.

• (b) Let

A =
d

dx
+ x, A∗ = − d

dx
+ x.



We show below that

dHn

dx
= 2nHn−1 = −Hn+1 + 2xHn. (1)

• Using this result, we compute that

Aφn =

(
d

dx
+ x

) (
e−x2/2Hn

)
= e−x2/2dHn

dx

= 2ne−x2/2Hn−1

= 2nφn−1,

and

A∗φn =

(
− d

dx
+ x

) (
e−x2/2Hn

)
= e−x2/2

(
−dHn

dx
+ 2xHn

)
= e−x2/2Hn+1

= φn+1,

• The product rule (xf)′ = xf ′ + f implies that

d

dx
x = x

d

dx
+ 1.

Hence

AA∗ =

(
d

dx
+ x

) (
− d

dx
+ x

)
= − d2

dx2
+

d

dx
x− x

d

dx
+ x2

= H + 1,

so H = AA∗ − 1.



• It follows that

Hφn = (AA∗ − 1) φn

= AA∗φn − φn

= Aφn+1 − φn

= 2(n + 1)φn − φn

= (2n + 1) φn.

• Finally, we prove (1). First, using the product rule, we get

dHn

dx
= (−1)n d

dx

[
ex2 dn

dxn

(
e−x2

)]
= (−1)nex2 dn+1

dxn+1

(
e−x2

)
+ (−1)n2xex2 dn

dxn

(
e−x2

)
= −Hn+1 + 2xHn. (2)

• Second, carrying out one differentiation and using the Leibnitz formula
for the nth derivative of a product, we get

dn+1

dxn+1

(
e−x2

)
=

dn

dxn

(
−2xe−x2

)
= −2x

dn

dxn

(
e−x2

)
− 2n

dn−1

dxn−1

(
e−x2

)
.

Multiplying this equation by (−1)n+1ex2
and using the definition of the

Hermite polynomials, we get the recurrence relation

Hn+1 = 2xHn − 2nHn−1.

Using this equation to eliminate Hn+1 from (2), we find that

dHn

dx
= 2nHn−1.

Remark. It follows from the Weierstrass approximation theorem that both
the Legendre polynomials and the Hermite functions are complete orthonor-
mal sets, and hence they provide orthonormal bases of L2([−1, 1]) and L2(R),
respectively.


