Solutions: Problem Set 3
Math 201B, Winter 2007

Problem 1. Prove that an infinite-dimensional Hilbert space is a separable
metric space if and only if it has a countable orthonormal basis.

Solution.

e If H is a finite-dimensional Hilbert space with orthonormal basis
{en |1 <n<d},
then
d
D= {Z Cnen | Cn = qn + i, With q,, 1, € Q}

n=1

is a countable dense subset of H.

e If H is an infinite-dimensional Hilbert space with countable orthonor-
mal basis {e, | n € N}, then

N
D = {chen | N €N, ¢, = q, + ir, with ¢,,r, E@}

n=1

is a countable dense subset. Thus, H is separable if it has a countable
orthonormal basis.

e Suppose that H has an uncountable orthonormal basis,
E={e,|ae A},
and let D be a dense subset of H.
e The orthonormality of F implies that if a # (3, then
lea = esl* = lleall” + lleg)® = 2.

The open balls B, 5 /Q(ea) are therefore disjoint, and, since D is dense,
each ball contains at least one point z, € D, say. The map a — x, is
a one-to-one map of A into D, so the cardinality of D is greater than
or equal to the cardinality of A. It follows that no dense subset of ‘H
is countable, so ‘H is not separable.



Problem 2. Prove that if M is a dense linear subspace of a separable Hilbert
space H, then H has an orthonormal basis consisting of elements in M.

Solution.

If 'H is finite-dimensional, then every linear subspace is closed. Thus,
the only dense linear subspace of H is H itself, and the result follows
from the fact that H has an orthonormal basis.

Suppose that H is infinite-dimensional. Since H is separable, it has a
countable dense subset {z, | n € N}, which need not be a subset of M.
Since M is dense in H, for each n € N, there exists a sequence ()
in M such that x,,, — x, as m — oo. The set {z, | m,n € N} is
then a countable subset of M that is dense in H.

Let D be a subset of M that is dense in H, and let B = {x,, | n € N}
be a maximal linearly independent subset of D. Then the linear span
of B, meaning all finite linear combinations of elements of B, contains
D so it is dense in ‘H. The closed linear span of B is therefore equal to

H.

Gram-Schmidt orthonormalization of B gives an orthonormal set
E ={e,|n €N}

whose closed linear span is equal to that of B, meaning that E is an
orthonormal basis of H. Moreover, since each x,, € M and each e, € E
is a finite linear combination of {z1,...,z,}, it follows that e, € M.
Thus, E is an orthonormal basis of H consisting of elements of M.



Problem 3. Define the Legendre polynomials P, by

1d”

a) Compute the first four Legendre polynomials, Py(z), Pi(z), Py(z), Ps(x).
b) Show that the Legendre polynomials are orthogonal in L*([—1, 1]).

hogonalization of the monomials {1, z,z?%, ...} in L*([-1,1]).

(
(
(c) Show that the Legendre polynomials are obtained by Gram-Schmidt or-
t
(d) Show that

/1 P, (z)? dx = 2

1 2n+1

(e) Show that the Legendre polynomial P, is an eigenfunction of the differ-
ential operator

with eigenvalue A, = n(n + 1), meaning that

LP, = \,P,.

(f) Compute the polynomial ¢(z) of degree 2 that is ‘closest’ to e on [—1, 1],
in the sense that

71|e q(x)? dm-mm{/ le® — dx|f()—ax2+bm+c}.

Solution.

e (a) The first few Legendre polynomials are

1

Py(x) =1, Pi(x) =z, Py(x) = gxz — 5
5 3 35 15 3
Py(z) = =2 — = Py(z) = =2t — =22+ =,
3 () 5%~ 5% 1() 32 70t 3

e To prove that P, is orthogonal to P,, where we may assume m < n
without loss of generality, it suffices to prove that x™ is orthogonal to
P, for every m < n. It then follows by linearity that every polynomial
of degree m < n is orthogonal to P,, including, in particular, P,,.



e Integrating by parts m-times, we compute that

(™ B,) = ! /lxmi(ﬁ—l)ndx
T ol ) T dan

(_1)m /1 dm qn—m ) n

- m —1)"d
2rn! )y dam (=) dzn—m (m ) v
(_1>mm[ dn—m—l ) n 1

2nn| dxn—m—l (1} - 1) .
= 0.

All of the boundary terms vanish at x = +1 because, for 1 < k < n,

the polynomial
dnfk ) n
dl.n—k (ZE B 1)

has a factor (2 — 1)*. Hence 2™ 1L P, for m < n, and P,, L P, for
m # n.

e (c) The linear subspace of polynomials of degree n has dimension 1+ 1.
The orthogonal complement of the polynomials of degree n — 1 in the
space of polynomials of degree n is equal to 1, and therefore {P,}
is a basis of the orthogonal complement. The Gram-Schmidt orthog-
onalization of the monomials gives a polynomial of degree n in this
complement, so it gives the Legendre polynomials up to normalization.

e (d) Integrating by parts as in (a), we compute that

1 bogr n d" n
Pub) = G [ @) g (1) e

N G A S I S,
= G @ e 0 1)"
- Ce ey

(2nn)? )

Using integration by parts again, we get

/_1 (> -1)"dz = /_1 (z—1)"(z+1)" dz

1 1



S— /1 (@ — 1"+ 1) de

n+1/_4
(—=)"n(n—1)...1 /1 om
= x+1)" do
(n+1)(n+2)...(2n) _1( )
(nl)222n+1
2n)!(2n+1)
Using this integral in the expression for the inner product of P,, and
simplifying the result we get

2
HPnH2 = <Pn>Pn> =
2n+1

(e) We write D = d/dx. Leibnitz’s rule for the nth derivative of a
product gives

D) =Y (Z) DFf - D" .

k=0

In particular, since D¥2™ = 0 for k > m,
D"(zf) = aD"f+nD""f,
D" (2*f) = 2*D"f+2naD"'f +n(n—1)D"f.
Let u(x) = (22 — 1)". Then
(mz — 1) Du = 2nzu.

We apply D"*! to this equation, and use Leibnitz’s rule to expand the
derivatives, which gives

(22 = 1) D"u+ (n+1)- 22D 'u+ (n+ 1)nD"u
= 2nz D" u + 2n(n + 1) D u.

After simplification we obtain that
(2 — 1) D""u+ 22D"'u — n(n+ 1)D"u = 0,
which implies that
(mQ — 1) D?*P, +2xDP, —n(n+1)P, = 0.

This equation is equivalent to LP,, = A\, P,.



e (f) By the projection theorem, the closest polynomial of degree N to
f € L*([-1,1]) is the one such that the error f — ¢ is orthogonal to the
linear space of polynomials of degree N, meaning that

N
q= Z cn Py
n=1
where the {¢, | n = 0,1,2,...} are the Fourier coefficients of f with
respect to the Legendre polynomials {P, |n=10,1,2,...},

(P f)
AR

o If f(x) =e€”, then we compute that

(Po, f) = /ll-exdx

1

(P, f) = /1 re® dx

2

67

/3 1
Py, f) = /1 (51,2_5) o da

3 ik
= | 222" — 3ze” 4 3¢ — —€”
9 2" |,

= e —

Using the normalization of the Legendre polynomials from (d), we find
that the closest quadratic polynomial ¢ to e® in L*([—1,1]) is

- 36030 )
2 e 2 \e 2 e 2 2
= —§(e—£)+§x+9(e—z)x2.
4 e e 4 e



Problem 4. Define the Hermite polynomials H,, by

n I‘2 dn —$2
Hy(x) = (~1)"e” — (e ) .
(a) Define
dn(x) = e 12 H, ().
Show that {¢, | n =0,1,2,...} is an orthogonal set in L*(R).

(b) Show that the nth Hermite function ¢, is an eigenfunction of the linear
operator

d? 9
H = T +z
with eigenvalue
A = 2n + 1.

Solution.

e (a) It is sufficient to show that ¢,, is orthogonal to e~ 2™ for each
m < n, since then ¢, is orthogonal to every function of the form
e~/ 2D, where p,, is a polynomial of degree m < n, and hence in
particular to ¢,,.

e Integrating by parts m-times, and using the fact that pe=*/2 — 0 as
|z| — oo for every polynomial p, we compute that
—x2/2 m > _ -1 n/oo mﬂ( _$2> d
€ T Pn -
< ¢ (1) - 2" e x
(0.9] dn—m 5
- e [ ()
(=)™ ™"m / = e x
dn—m—l 9 S
. m+n —x
= (=1 {—dxn_m_l (e )} B

= 0,
which proves the result.

e (b) Let



We show below that

dH,,
dx

= 27’LHn71 = _Hn+1 + szn

Using this result, we compute that

Ao, = (%4—3&) (e‘“Q/an>

c dx
= 2ne*?H,_,

2n¢n—17
and
d 2
* _ v —z%/2
Ao, ( o +a:) (e Hn>
= e %/2 <_dHn + QIHn)
dx

—z2/2
= € /HnJrl

¢n+17

The product rule (zf)" = xf" + f implies that

ix—xi—i-l
dz”  Tdx
Hence
. d d
— _d_2 i _ i_f_ 2
N dz?  dx xdm v
= H+1,

so H =AA* — 1.



e It follows that

Hep = (AA"—1)¢n
AA fn — ¢n

= A¢n+1 — On

2(n + 1)én — ¢n
= (2n+1)¢,.

e Finally, we prove (1). First, using the product rule, we get

T - g ()

2 dTL+1 2 2 dn 2
= (_1)71,63: W <€_x ) + (—1>n2$6m % <€_Q3 >

e Second, carrying out one differentiation and using the Leibnitz formula
for the nth derivative of a product, we get

AR dr .
pres) () = w(—m )
ar g2 dn—1 g2
= Tga (e )_2ndx”—1 (6 )

Multiplying this equation by (—1)""e** and using the definition of the
Hermite polynomials, we get the recurrence relation

Hn—l—l = 2[L‘Hn — 2TLH,-L_1.
Using this equation to eliminate H,; from (2), we find that

dH,,
dx

= 2an_1.

Remark. It follows from the Weierstrass approximation theorem that both
the Legendre polynomials and the Hermite functions are complete orthonor-
mal sets, and hence they provide orthonormal bases of L?([—1,1]) and L*(R),
respectively.



