
Solutions: Problem Set 4
Math 201B, Winter 2007

Problem 1. (a) Define f : R → R by

f(x) =

{
x−1/2 if 0 < x < 1,
0 otherwise.

Use the monotone convergence theorem to show that f ∈ L1(R).

(b) Suppose that {rn ∈ Q | n ∈ N} is an enumeration of the rational numbers.
Define g : R → R by

g(x) =
∞∑

n=1

1

2n
f(x− rn),

where f is the function defined in (a). Show that g ∈ L1(R), even though it
is unbounded on every interval.

Solution.

• Define fn : R → R by

fn(x) =

{
x−1/2 if 1/n < x < 1− 1/n,
0 otherwise.

Then (fn) is a monotone increasing sequence of nonnegative, measur-
able functions (since f−1 ((a,∞)) is open and therefore measurable for
every a ∈ R) which converges pointwise to f on R (so f is measurable).

• Each fn is Riemann integrable on [0, 1], and∫
R

fn dx =

∫ 1−1/n

1/n

x−1/2 dx

=
[
2x1/2

]1−1/n

1/n

→ 2 as n →∞.

• The monotone convergence theorem implies that∫
R

f dx = lim
n→∞

∫
R

fn dx = 2 < ∞,

so f ∈ L1(R).



• (b) Let

gN(x) =
N∑

n=1

1

2n
f(x− rn).

Then (gN) is a monotone increasing sequence, since f ≥ 0, that con-
verges pointwise to g. By the linearity of the integral and the transla-
tion invariance of Lebesgue measure,∫

R
gN dx =

N∑
n=1

1

2n

∫
R

f(x− rn) dx

= 2
N∑

n=1

1

2n

→ 2 as N →∞.

Hence, by the monotone convergence theorem∫
R

g dx = 2,

so g is integrable. (In particular, the series defining g diverges to ∞ on
at most a set of measure zero.)

• The function g is unbounded in any neighborhood of rn ∈ Q, and
therefore on any open interval since the rationals are dense in R.

Remark. This example illustrates that integrable functions are not neces-
sarily as ‘nice’ as one might imagine; in particular they do not necessarily
approach 0 at infinity.



Problem 2. If f ∈ L1(R), prove that

lim
n→∞

1

2n

∫ n

−n

f dx = 0.

Give an example to show that this result need not be true if f is not integrable
on R.

Solution.

• Let

fn =
1

2n
χ[−n,n]f,

where χ[−n,n] is the characteristic function of the interval [−n, n]. Then∫
fn dx =

1

2n

∫ n

−n

f dx.

• We have fn(x) → 0 as n → ∞ whenever f(x) 6= ±∞, so fn → 0
pointwise a.e. on R. Also, for n ≥ 1,

|fn| ≤
1

2
|f | ∈ L1(R).

• The Lebesgue dominated convergence theorem implies that

lim
n→∞

∫
fn dx =

∫
lim

n→∞
fn dx =

∫
0 dx = 0,

which proves the result

• If f = 1, then

lim
n→∞

1

2n

∫ n

−n

f dx = 1.

In this case the sequence

fn =
1

2n
χ[−n,n]

converges pointwise (and even uniformly) to 0 on R as n →∞, but the
integrals do not. Note that the convergence is not monotone and the
sequence (fn) is not dominated by any integrable function.



Problem 3. Define f : R2 → R by

f(x, y) =


1/x2 if 0 < y < x < 1,

−1/y2 if 0 < x < y < 1,
0 otherwise.

Compute the following integrals:∫
R2

|f(x, y)| dxdy;

∫
R

(∫
R

f(x, y) dx

)
dy;

∫
R

(∫
R

f(x, y) dy

)
dx.

Are your results consistent with Fubini’s theorem?

Solution.

• If y ≤ 0 or y ≥ 1, then f(x, y) = 0, and∫
R

f(x, y) dx = 0.

If 0 < y < 1, then∫
R

f(x, y) dx =

∫ y

0

− 1

y2
dx +

∫ 1

y

1

x2
dx

=

[
− x

y2

]x=y

x=0

+

[
−1

x

]x=1

x=y

= −1

y
− 1 +

1

y
= −1.

It follows that∫
R

(∫
R

f(x, y) dx

)
dy =

∫ 1

0

−1 dy = −1.

• If x ≤ 0 or x ≥ 1, then f(x, y) = 0, and∫
R

f(x, y) dy = 0.



If 0 < x < 1, then∫
R

f(x, y) dy =

∫ x

0

1

x2
dy +

∫ 1

x

− 1

y2
dy

=
[ y

x2

]y=x

y=0
+

[
1

y

]y=1

y=x

=
1

x
+ 1− 1

x
= 1.

It follows that ∫
R

(∫
R

f(x, y) dy

)
dx =

∫ 1

0

1 dx = 1.

• According to Fubini’s theorem, we can evaluate the integral of |f | ≥ 0
as an iterated integral (in either order):∫

R2

|f(x, y)| dxdy =

∫
R

(∫
R
|f(x, y)| dx

)
dy

=

∫ 1

0

(∫ y

0

1

y2
dx +

∫ 1

y

1

x2
dx

)
dy

=

∫ 1

0

([
x

y2

]x=y

x=0

+

[
−1

x

]x=1

x=y

)
dy

=

∫ 1

0

(
2

y
− 1

)
dy

= lim
n→∞

∫ 1

1/n

(
2

y
− 1

)
dy

= lim
n→∞

[2 log y − y]11/n

= ∞.

• This example shows that if one drops the assumption that f ∈ L1 in
Fubini’s theorem then the iterated integrals with different orders need
not be equal. Also note that both

∫
f+ dxdy and

∫
f− dxdy are equal

to ∞, so
∫

f dxdy is undefined.



Problem 4. Define f : (0,∞)× (0,∞) → R by

f(x, y) = xe−x2(1+y2).

Compute the iterated integrals with respect to x, y and y, x, and use Fubini’s
theorem to show that ∫ ∞

0

e−t2 dt =

√
π

2
.

Solution.

• Integrating with respect to x followed by y, and using the monotone
convergence theorem, we get∫ ∞

0

(∫ ∞

0

f(x, y) dx

)
dy =

∫ ∞

0

(
lim

n→∞

∫ n

0

xe−x2(1+y2) dx

)
dy

=
1

2

∫ ∞

0

(
lim

n→∞

[
−e−x2(1+y2)

1 + y2

]x=n

x=0

)
dy

=
1

2

∫ ∞

0

1

1 + y2
dy

=
1

2
lim

n→∞

∫ n

0

1

1 + y2
dy

=
1

2
lim

n→∞

[
tan−1 y

]n
0

=
π

4
.

• Integrating with respect to y followed by x, using the monotone con-
vergence theorem, and making the change of variables t = xy, we get∫ ∞

0

(∫ ∞

0

f(x, y) dy

)
dx =

∫ ∞

0

(
lim

n→∞

∫ n

0

xe−x2(1+y2) dy

)
dx

=

∫ ∞

0

(
lim

n→∞

∫ nx

0

e−(x2+t2) dt

)
dx

=

(∫ ∞

0

e−x2

dx

) (∫ ∞

0

e−t2 dt

)
=

(∫ ∞

0

e−t2 dt

)2

.



• The function f is non-negative, so Fubini’s theorem implies that the
iterated integrals of f are equal, and both are finite if one is finite.
Equating the two iterated integrals and taking the square-root, we get
the result.



Problem 5. In a normed space X, let

Br(a) = {x ∈ X | ‖x− a‖ < r} .

be the ball of radius r > 0 centered at a ∈ X. Lebesgue measure m on Rd

(with the Euclidean norm, say) has the properties that every ball is mea-
surable with finite, nonzero measure, and the measure of a ball is invariant
under translations. That is, for every 0 < r < ∞ and a ∈ X

0 < m (Br(a)) < ∞, m (Br(a)) = m (Br(0)) .

Prove that it is not possible to define a measure with these properties on an
infinite-dimensional Hilbert space.

Solution.

• SinceH is an infinite-dimensional Hilbert space, it contains a countably
infinite orthonormal set {en | n ∈ N}.

• If k 6= n then the Pythagorean theorem implies that

‖ek − en‖ =
√
‖ek‖2 + ‖en‖2 =

√
2.

It follows that the balls B√2/2(ek) and B√2/2(en) are disjoint.

• Suppose that

m
(
B√2/2(0)

)
= ε.

Then, by translation invariance,

m
(
B√2/2(en)

)
= ε for every n ∈ N.

• Since the balls are disjoint, the countable additivity of m implies that
if ε > 0

m

(⋃
n∈N

B√2/2(en)

)
=

∑
n∈N

m
(
B√2/2(en)

)
=

∑
n∈N

ε

= ∞.



• If x ∈ B√2/2(en), then

‖x‖ ≤ ‖en‖+ ‖x− en‖ < 1 +

√
2

2
.

It follows that ⋃
n∈N

B√2/2(en) ⊂ B1+
√

2/2(0).

• The additivity and non-negativity of m implies that

m

(⋃
n∈N

B√2/2(en)

)
≤ m

(
B1+

√
2/2(0)

)
,

so if m
(
B√2/2(0)

)
> 0 then

m
(
B1+

√
2/2(0)

)
= ∞.

• Thus, if the measure of the smaller ball, with radius
√

2/2, is nonzero,
the measure of the larger ball, with radius (1 +

√
2/2), is infinite, so

there is no translation invariant measure that assigns a non-zero, finite
measure to every ball.


