Solutions: Problem Set 4
Math 201B, Winter 2007

Problem 1. (a) Define f : R — R by

f(z) = 2 if0<x <1,
10 otherwise.

Use the monotone convergence theorem to show that f € L*(R).

(b) Suppose that {r, € Q | n € N} is an enumeration of the rational numbers.
Define g : R — R by

g(z) = flz =),
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a). Show that g € L'(R), even though it
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where f is the function defined in
is unbounded on every interval.

Solution.
e Define f, : R — R by

V2 ifl/n<z<1—1/n,
Jalw) = { 0 otherwise.

Then (f,) is a monotone increasing sequence of nonnegative, measur-
able functions (since f~! ((a,00)) is open and therefore measurable for
every a € R) which converges pointwise to f on R (so f is measurable).

e Each f, is Riemann integrable on [0, 1], and

1-1/n
/ fodr = / V% dx
R 1/n

= [,

— 2 as n — oQ.
e The monotone convergence theorem implies that
/fdleim fndr =2 < o0,
R e JR

so f € LY(R).



e (b) Let
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Then (gx) is a monotone increasing sequence, since f > 0, that con-
verges pointwise to g. By the linearity of the integral and the transla-
tion invariance of Lebesgue measure,

/gN dx
R

N
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— ;%Af(x—rn)dw
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n=1

— 2 as N — oo.

Hence, by the monotone convergence theorem

/gdx:Q,
R

so g is integrable. (In particular, the series defining g diverges to co on
at most a set of measure zero.)

e The function g is unbounded in any neighborhood of r, € Q, and
therefore on any open interval since the rationals are dense in R.

Remark. This example illustrates that integrable functions are not neces-
sarily as ‘nice’ as one might imagine; in particular they do not necessarily

approach 0 at infinity.



Problem 2. If f € L*(R), prove that

n

Give an example to show that this result need not be true if f is not integrable
on R.

Solution.

e Let ]

fn = %X[—n,n]fv

where X[_nn is the characteristic function of the interval [—n, n|. Then

/fndx:%/i:fdx.

e We have f,(x) — 0 as n — oo whenever f(x) # +oo, so f, — 0
pointwise a.e. on R. Also, for n > 1,

1
1l < 511 € L(R).
e The Lebesgue dominated convergence theorem implies that

lim fndx:/lim fndx:/de:O,

n—oo
which proves the result

o If f =1, then

In this case the sequence

1

fn = %X[—n,n]

converges pointwise (and even uniformly) to 0 on R as n — oo, but the
integrals do not. Note that the convergence is not monotone and the
sequence (f,,) is not dominated by any integrable function.



Problem 3. Define f : R> — R by
/22 if0<y<z<l,
flr,y) =< —1/y* f0<z<y<l,

0 otherwise.

Compute the following integrals:

[elasa [ ([ ) a [ ([ @)

Are your results consistent with Fubini’s theorem?

Solution.

o If y<Oory>1,then f(x,y) =0, and

/Rf(x, y)da = 0.

If 0 <y <1, then

/Rf(a:,y)da: = /Oy—yidaﬁk
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= —L

It follows that

/R(/Rf(x’y)dm) dy:/ol—ldy:—L

o Ifz <0Oorxz>1,then f(x,y) =0, and

/Rf(:v,y) dy = 0.



If 0 <z <1, then

| |
/Rf(x,y) y /0 p y+/x 2

y=x
1 1
= Z4+1-=
X X
= 1.

It follows that

/R</Rf(x,y)dy) dx:/olldle.

e According to Fubini’s theorem, we can evaluate the integral of |f| > 0
as an iterated integral (in either order):

[ iiaasts = [ ([ i) a
= ([ e [ o) o
)
- [ (-1)w

1
2

= lim (— — 1> dy
n=00 Ji/m \Y

= lim [2logy —y)y,
= OQ.

e This example shows that if one drops the assumption that f € L' in
Fubini’s theorem then the iterated integrals with different orders need
not be equal. Also note that both [ f, dzdy and [ f_ dazdy are equal
to 0o, so [ f dxdy is undefined.



Problem 4. Define f : (0,00) x (0,00) — R by
f(.%', y) _ $6_$2(1+y2)'
Compute the iterated integrals with respect to x, y and y, x, and use Fubini’s

theorem to show that .
/ et dt = ﬁ
0 2

Solution.

e Integrating with respect to = followed by y, and using the monotone
convergence theorem, we get

/ (/ f(l’ay)dx) dy = / (lim/ xe‘m2(1+y2)d:v> dy
0 0 0 n—ee Jo
00 —x2(1+y2) r=n
S ([ Y
2 0 e 1+y =0

1 [/ 1
= = d
2/0 1492 4

e Integrating with respect to y followed by z, using the monotone con-
vergence theorem, and making the change of variables t = zy, we get

[ ([ semme = [ (o [ e10)
- () o
_ ( /O : e dx)2 ( /O Tt dt)
= ( /O et dt) .



e The function f is non-negative, so Fubini’s theorem implies that the
iterated integrals of f are equal, and both are finite if one is finite.
Equating the two iterated integrals and taking the square-root, we get
the result.



Problem 5. In a normed space X, let
By(a)={x e X |||xr—a| <r}.

be the ball of radius 7 > 0 centered at a € X. Lebesgue measure m on R?
(with the Euclidean norm, say) has the properties that every ball is mea-
surable with finite, nonzero measure, and the measure of a ball is invariant
under translations. That is, for every 0 < r < oo and a € X

0 <m(Br(a)) <oo,  m(B:(a)) =m(B(0)).

Prove that it is not possible to define a measure with these properties on an
infinite-dimensional Hilbert space.

Solution.

e Since H is an infinite-dimensional Hilbert space, it contains a countably
infinite orthonormal set {e, | n € N}.

e If k = n then the Pythagorean theorem implies that

lex — eall = V/llexl® + lleall? = V2.

It follows that the balls B 5 5(€x) and B, /5 5(€,) are disjoint.

e Suppose that
m (Bﬂ/g(())) —c.

Then, by translation invariance,

m (Bﬁ/z(en)> =¢ for every n € N.

e Since the balls are disjoint, the countable additivity of m implies that
ife>0

m (U Bﬁ/Z(en)) = Zm (B\/ﬁﬂ(en))

neN neN

= D e
neN
= OQ.



o Ifz e B\/§/2(e")’ then

V2
Izl < llenll + llz = eall <14 -

It follows that
U B\/i/2<6”) - Bl+\/§/2<0)-

neN
e The additivity and non-negativity of m implies that

m (U B\/i/Q(e")) sm <Bl+\/§/2<0>> )

neN

so if m (B\/i/Q(O)) > 0 then

m (Buiyan(0) = .

e Thus, if the measure of the smaller ball, with radius /2 /2, is nonzero,
the measure of the larger ball, with radius (1 + v/2/2), is infinite, so
there is no translation invariant measure that assigns a non-zero, finite
measure to every ball.



