
Solutions: Problem Set 6
Math 201B, Winter 2007

Problem 1. Consider the Schrödinger equation on the circle,

iut = uxx, x ∈ T, t ∈ R,

u(x, 0) = f(x), x ∈ T,

where u : T × R → C, f : T → C and the derivatives are interpreted in an
appropriate sense.

(a) Solve for u(x, t) by the use of Fourier series. If U(t) = u(·, t) ∈ L2(T),
show that

U(t) = T (t)f

where T (t) : L2(T) → L2(T) is a bounded linear operator, defined for all
t ∈ R.

(b) Show that T (t) is a unitary operator.

(c) Briefly compare the qualitative properties (smoothing, reversibility, long-
time behavior) of the Schrödinger equation with those of the heat equation.

Solution.

• Writing u in a Fourier series,

u(x, t) =
1√
2π

∑
n∈Z

ûn(t)einx,

and taking Fourier coefficients of the equation, we get

i
dûn

dt
= −n2ûn,

ûn(0) = f̂n.

The solution is
ûn(t) = f̂ne

in2t.

It follows that

u(x, t) =
1√
2π

∑
n∈Z

f̂ne
in2teinx.



• We may write u(·, t) = T (t)f where the operator T (t) is defined by

̂(T (t)f)n = ein2tf̂n.

Note that since |ein2t| = 1, Parseval’s theorem implies that

‖T (t)f‖2 =
∑
n∈Z

∣∣∣ ̂(T (t)f)n

∣∣∣2
=

∑
n∈Z

∣∣∣ein2tf̂n

∣∣∣2
=

∑
n∈Z

∣∣∣f̂n

∣∣∣2
= ‖f‖2.

Thus, T (t)f ∈ L2(T) for every f ∈ L2(T), and T (t) is an isometry on
L2(T).

• Similarly if g ∈ L2(T), then, since ein2t 6= 0, there exists a unique
f ∈ L2(T) such that Tf = g, given by

f̂n = e−in2tĝn.

Thus, T (t) is invertible, with

T−1(t) : L2(T) → L2(T)

defined by
̂(T (t)−1f)n = e−in2tf̂n.

• It follows from Parseval’s theorem that

〈f, Tg〉 =
∑
n∈Z

f̂nT̂ gn

=
∑
n∈Z

f̂ne
in2tĝn

=
∑
n∈Z

e−in2tf̂nĝn

= 〈T ∗f, g〉,



where
̂(T ∗(t)f)n = e−in2tf̂n.

We see that T ∗(t) = T−1(t), so T (t) is unitary.

• (c) A similar argument to the one above shows that for any s ≥ 0∑
n∈Z

(1 + n2)s
∣∣∣ ̂(T (t)f)n

∣∣∣2 =
∑
n∈Z

(1 + n2)s
∣∣∣f̂n

∣∣∣2
so T (t)f ∈ Hs(T) if and only if f ∈ H2(T). Thus, the solutions at
time t has exactly the same smoothness, as measured by the Sobolev
spaces Hs(T), as the initial data f , and, unlike the heat equation, the
Schrödinger equation does not smooth the solution.

• The Schrödinger equation can be solved both forwards and backwards
in time, unlike the heat equation which can be solved only forwards in
time.

• Finally, unlike the solution of the heat equation, the solution of the
Schrödinger equation does not approach a steady state as t → ∞;
instead it is an almost-periodic, oscillatory function of t.

Remark. The Schrödinger equation is a typical example of a dispersive wave
equation. This partial differential equation describes a single non-relativistic
quantum mechanical particle, which is not subject to any forces, that moves
around a one-dimensional circle. The wave-function u(x, t) has the interpre-
tation that |u(x, t)|2 is the spatial probability density of finding the particle
at the spatial location x at time t.



Problem 2. (a) Suppose that P , Q are orthogonal projections on a Hilbert
space. Prove that PQ = 0 if and only if ran P ⊥ ran Q.

(b) Suppose that {P1, P2, . . . , Pn} is a family of orthogonal projections on a
Hilbert space, and PjPk = 0 for j 6= k. Prove that P1 + P2 + . . . + Pn is an
orthogonal projection.

(c) Suppose that {Pk | k ∈ N} is a countably-infinite family of orthogonal
projections on a Hilbert space H such that⊕

k∈N

ran Pk = H, PjPk = 0 for j 6= k.

Prove that for every x ∈ H
∞∑

k=1

Pkx = x,

where the series converges strongly (i.e. with respect to the norm) in H. Is
it true or false that

∞∑
k=1

Pk = I,

where the series converges with respect to the operator norm on B(H)?

Solution.

• (a) If PQ = 0, then ran Q ⊂ ker P , so (ker P )⊥ ⊂ (ran Q)⊥. Since
(ker P )⊥ = ran P , we see that ran P ⊥ ran Q.

• Conversely, if ran P ⊥ ran Q, then ran P ⊂ (ran Q)⊥, which implies
that (ran Q)⊥⊥ ⊂ (ran P )⊥. Since ran Q is closed, (ran Q)⊥⊥ = ran Q,
and since P is an orthogonal projection (ran P )⊥ = ker P . Hence
ran Q ⊂ ker P , and PQ = 0.

• (b) Let E = P1 + . . . + Pn. Since P ∗j = Pj, P 2
j = Pj, and PjPk = 0 for

j 6= k, we have

E∗ = (P1 + . . . + Pn)∗ = P ∗1 + . . . + P ∗n = P1 + . . . + Pn = E,

and

E2 =

(
n∑

j=1

Pj

)(
n∑

k=1

Pk

)
=

n∑
j,k=1

PjPk =
n∑

j=1

P 2
j =

n∑
j=1

Pj = E,

so E is an orthogonal projection.



• (c) Let

En =
n∑

k=1

Pk.

Then En is an orthogonal projection, so 〈x, Enx〉 is real, and

‖Enx‖2 = 〈Enx, Enx〉 =
〈
x, E2

nx
〉

= 〈x, Enx〉 .
As in the proof of Bessel’s inequality, we compute that

0 ≤ ‖Enx− x‖2

≤ 〈Enx− x, Enx− x〉
≤ ‖Enx‖2 − 2 〈x, Enx〉+ ‖x‖2

≤ ‖x‖2 − ‖Enx‖2 ,

so for every n ∈ N, we have

‖Enx‖2 ≤ ‖x‖2.

• Since the Pk are mutually orthogonal projections, the sequence (Pkx)
is orthogonal, and by the Pythagorean theorem

‖Enx‖2 =
n∑

k=1

‖Pkx‖2 .

It follows that
n∑

k=1

‖Pkx‖2 ≤ ‖x‖2,

which implies that
∑∞

k=1 Pkx converges, to y ∈ H, say.

• Suppose that z ∈ ran Pk. Then Pkz = z and z ∈ (ran Pj)
⊥ for j 6= k,

so

〈z, y〉 =

〈
z,

∞∑
j=1

Pjx

〉
= 〈z, Pkx〉 = 〈Pkz, x〉 = 〈z, x〉 .

It follows that (x− y) ⊥ ran Pk for every k ∈ N, which implies that

(x− y) ⊥
⊕
k∈N

ran Pk.

Hence x− y = 0, and
∞∑

k=1

Pkx = x.



Problem 3. (a) Suppose that H1, H2 are Hilbert spaces. Define H1 ⊕ H2

as the linear space of ordered pairs

H1 ⊕H2 = {(x1, x2) | x1 ∈ H1, x2 ∈ H2} ,

with the inner product of x, y ∈ H1 ⊕ H2, with x = (x1, x2), y = (y1, y2),
defined by

〈x, y〉H1⊕H2
= 〈x1, y1〉H1

+ 〈x2, y2〉H2
.

Prove that H1 ⊕H2 is a Hilbert space.

(b) Suppose that {Hα | α ∈ A} is an arbitrary indexed family of Hilbert
spaces. Define

⊕
α∈A

Hα =

{
(xα)α∈A | xα ∈ Hα,

∑
α∈A

‖xα‖2 < ∞

}
,

with the inner product of

x = (xα) ∈
⊕
α∈A

Hα, y = (yα) ∈
⊕
α∈A

Hα

defined by

〈x, y〉 =
∑
α∈A

〈xα, yα〉 .

Prove that
⊕

α∈AHα is a Hilbert space.

Solution.

• (a) This is straightforward to verify.

• (b) First, we prove that

H =
⊕
α∈A

Hα

is a linear space. If λ ∈ C and x = (xα) ∈ H, then∑
α∈A

‖λxα‖2 = |λ|2
∑
α∈A

‖xα‖2 < ∞,



so λx ∈ H. If x = (xα) ∈ H, y = (yα) ∈ H, and I ⊂ A is a finite subset,
then using the triangle inequality in Hα and the triangle inequality in
`2(I), (∑

α∈I

[aα + bα]2
)1/2

≤

(∑
α∈I

|aα|2
)1/2

+

(∑
α∈I

|bα|2
)1/2

,

we get(∑
α∈I

‖xα + yα‖2

)1/2

≤

(∑
α∈A

[‖xα‖+ ‖yα‖]2
)1/2

≤

(∑
α∈I

‖xα‖2

)1/2

+

(∑
α∈I

‖yα‖2

)1/2

.

It follows that
∑

α∈A ‖xα + yα‖2 < ∞, so (x + y) ∈ H.

• The series defining the inner product is absolutely convergent and well-
defined on H as an unordered sum since, by the Cauchy-Schwartz in-
equality, for any finite subset I ⊂ A∑

α∈I

|〈xα, yα〉| ≤
∑
α∈I

‖xα‖ ‖yα‖

≤

(∑
α∈I

‖xα‖2

)1/2(∑
α∈I

‖yα‖2

)1/2

≤ ‖x‖ ‖y‖.

It is straightforward to verify that 〈·, ·〉 : H×H → C has the properties
of an inner product.

• The main thing we need to prove is that H is complete. Suppose
that (xn)∞n=1 is a Cauchy sequence in H, with xn = (xn,α)α∈A, where
xn,α ∈ Hα. Then, since

‖xn,α − xm,α‖ ≤ ‖xn − xm‖,

(xn,α)∞n=1 is a Cauchy sequence in Hα for each α ∈ A. Since Hα is
complete, there exists xα ∈ Hα such that xn,α → xα as n → ∞. Let
x = (xα)α∈A. We claim that ‖x − xn‖ → 0 as n → ∞ and x ∈ H,
meaning that H is complete.



• If I ⊂ A is ay finite subset, then∑
α∈I

‖xα − xn,α‖2 = lim
m→∞

∑
α∈I

‖xm,α − xn,α‖2

≤ lim
m→∞

∑
α∈A

‖xm,α − xn,α‖2

= lim
m→∞

‖xm − xn‖2.

Since the sequence (xn) is Cauchy, given ε > 0, there exists N ∈ N
such that ‖xm − xn‖ < ε for all n, m ≥ N . It follows that if n ≥ N ,
then limm→∞ ‖xm − xn‖2 ≤ ε2, and

‖x− xn‖ =

(∑
α∈A

‖xα − xn,α‖2

)1/2

= sup


(∑

α∈I

‖xα − xn,α‖2

)1/2

| I ⊂ A finite


≤ ε,

meaning that ‖x− xn‖ → 0 as n →∞.

• By the previous proof, we can pick n ∈ N such that ‖x − xn‖ ≤ 1,
meaning that x − xn ∈ H. Then x = (x − xn) + xn ∈ H since H is
closed under addition.

Remark. A special case of this proof is the fact that

`2(N) =
⊕
n∈N

C

is a Hilbert space.


