
Solutions: Problem Set 7
Math 201B, Winter 2007

Problem 1. Suppose that m : [0, 1] → C is a continuous complex-valued
function on [0, 1]. Define a multiplication operator

M : L2([0, 1]) → L2([0, 1])

by
(Mf)(x) = m(x)f(x).

(a) Prove that M is a bounded linear operator on L2([0, 1]) and compute its
adjoint M∗.

(b) For what functions m is M : (i) self-adjoint; (ii) skew-adjoint; (iii) uni-
tary?

Solution.

• (a) We have

‖Mf‖ =

(∫ 1

0

|Mf(x)|2 dx

)1/2

=

(∫ 1

0

|m(x)f(x)|2 dx

)1/2

≤

(
sup

x∈[0,1]

|m(x)|

)(∫ 1

0

|f(x)|2 dx

)1/2

≤ ‖m‖∞‖f‖,

where ‖m‖∞ = supx∈[0,1] |m(x)| is finite since a continuous function on
a compact set is bounded. It follows that M : L2([0, 1]) → L2([0, 1]) is
bounded and

‖M‖ ≤ ‖m‖∞.

In fact, ‖M‖ = ‖m‖∞, as can be seen by considering the action of M
on functions that are supported in a small interval about a point where
|m| attains its maximum.



• For f, g ∈ L2([0, 1]), we have

〈M∗f, g〉 = 〈f, Mg〉

=

∫ 1

0

f(x)Mg(x) dx

=

∫ 1

0

f(x)m(x)g(x) dx

=

∫ 1

0

m(x)f(x)g(x) dx.

Thus
M∗f(x) = m(x)f(x),

and M∗ is multiplication by the complex-conjugate of m.

(b) The multiplication operator M is self-adjoint if m is real-valued,
skew-adjoint if m is imaginary-valued, and unitary if m takes values in
the unit circle {z ∈ C | |z| = 1}. Note that M and M∗ commute, so
any multiplication operator is normal.



Problem 2. The Hilbert transform H : L2(T) → L2(T) is defined by

H

(
1√
2π

∑
n∈Z

f̂(n)einx

)
=

1√
2π

∑
n∈Z

i sgn n f̂(n)einx,

where

sgn n =


1 if n > 0,
0 if n = 0,
−1 if n < 0.

That is, the Hilbert transform acts on a function by multiplying its nth
Fourier coefficient by i if n is positive and −i if n is negative.

(a) If n ∈ N is a positive integer, compute H(cos nx) and H(sin nx). Show
that H is a bounded linear map on L2(T) and compute its norm.

(b) Show that H is skew-adjoint.

(c) Let M be the subspace of periodic functions with zero mean,

M =

{
f ∈ L2(T) |

∫
T
f dx = 0

}
.

Show that the range of H is equal to M. What is the kernel of H?

(d) Show that H2 = −I on M and that H is a unitary transformation on
M.

Solution.

• (a) For n ∈ Z, we have

H
(
einx
)

=


ieinx if n > 0,
0 if n = 0,
−ieinx if n < 0.

It follows that if n ∈ N, then

H (cos nx) = H

(
einx + e−inx

2

)
=

ieinx − ie−inx

2
= − sin nx,



H (sin nx) = H

(
einx − e−inx

2i

)
=

einx + e−inx

2
= cos nx.

• By Parseval’s theorem,

‖Hf‖2 =
∑
n∈Z

∣∣∣Ĥf(n)
∣∣∣2

=
∑
n∈Z

∣∣∣isgn nf̂(n)
∣∣∣2

=
∑
n6=0

∣∣∣f̂(n)
∣∣∣2

≤
∑
n∈Z

∣∣∣f̂(n)
∣∣∣2

≤ ‖f‖2,

so H is bounded with ‖H‖ ≤ 1. Since ‖Heinx‖ = ‖einx‖, we see that
‖H‖ = 1.

• (b) By Parseval’s theorem, if f, g ∈ L2(T), then

〈f, Hg〉 =

∫
T
f(x) Hg(x) dx

=
∑
n∈Z

f̂(n) Ĥg(n)

=
∑
n∈Z

f̂(n) isgn nĝ(n)

= −
∑
n∈Z

isgn nf̂(n) ĝ(n)

= −〈Hf, g〉,

so H∗ = −H.

• (c) If g = Hf , then ĝ(0) = 0. Since

ĝ(0) =
1√
2π

∫
T
g(x) dx,



it follows that g ∈M, so ran H ⊂M.

• Conversely, if g ∈M then

g(x) =
1√
2π

∑
n6=0

ĝ(n)einx,

where
‖g‖2 =

∑
n6=0

|ĝ(n)|2 < ∞.

Since 1/(isgn n) = −isgn n for n 6= 0, it follows that g = Hf ∈ ranH
where f = −Hg ∈M is given by

f(x) = − 1√
2π

∑
n6=0

isgn nĝ(n)einx.

Thus, ran H = M, and H2 = −I on M.

• The kernel of H is

ker H =
{

f ∈ L2(T) | f̂(n) = 0 for n 6= 0
}

= {constant functions on T} .

• (d) We have shown that H2 = −I on M and H∗ = −H on L2(T). It
follows that H−1 = −H = H∗ on M, so H is unitary on M.



Problem 3. Let L2(T) and H1(T) be the Hilbert spaces of periodic square-
integrable functions and functions with square-integrable weak derivatives,
respectively, with the inner products

〈f, g〉L2 =

∫
T
fg dx, 〈f, g〉H1 =

∫
T

(
fg + f ′g′

)
dx.

Let D : H1(T) → L2(T) be the derivative operator D = d/dx defined by

(̂Df)(n) = inf̂(n).

Prove that D∗ : L2(T) → H1(T) is given by

D∗ = D
(
D2 − 1

)−1
.

Solution.

• From Parseval’s theorem, we have

〈f, g〉L2 =
∑
n∈Z

f̂(n)ĝ(n)

〈f, g〉H1 =
∑
n∈Z

(
1 + n2

)
f̂(n)ĝ(n)

• The definition of the adjoint implies that for every f ∈ L2(T) and
g ∈ H1(T), we have

〈f, Dg〉L2 =
∑
n∈Z

f̂(n)D̂g(n)

=
∑
n∈Z

f̂(n) inĝ(n)

= −
∑
n∈Z

inf̂(n)ĝ(n)

= −
∑
n∈Z

(
1 + n2

)( in

n2 + 1
f̂(n)

)
ĝ(n)

= 〈D∗f, g〉H1 ,



where

(̂D∗f)(n) = − in

n2 + 1
f̂(n).

Since the application of D to f corresponds to the multiplication of the
nth Fourier coefficient f̂(n) of f by in, we see that

D∗ = −D(−D2 + 1)−1,

which proves the result.

• Note that (−D2 + 1) : H2(T) → L2(T), given by

̂(−D2 + 1)f(n) =
(
n2 + 1

)
f̂(n),

is invertible, with inverse (−D2 + 1)−1 : L2(T) → H2(T) given by

̂(−D2 + 1)−1f(n) =
1

n2 + 1
f̂(n),

and D : H2(T) → H1(T) is given by

(̂Df)(n) = inf̂(n).

Thus, the expression for D∗ makes sense as a composition of maps.
Alternatively, and more simply, one can define the action of D∗ on f as
multiplication of the nth Fourier coefficient f̂(n) of f by −in/(n2 + 1).


