Solutions: Problem Set 8 Math 201B, Winter 2007

Problem 1. Let $H : \mathbb{C}^2 \to \mathbb{C}^2$ be the linear map whose matrix with respect to the standard basis on \mathbb{C}^2 is

$$[H] = \left(\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array}\right).$$

Why must e^{-itH} be unitary for any $t \in \mathbb{R}$? Compute the matrix of e^{-itH} and verify explicitly that it is unitary.

Solution.

• Since $(e^A)^* = e^{A^*}$, $(e^A)^{-1} = e^{-A}$, and $H = H^*$, we have $(e^{-itH})^* = e^{(-itH)^*} = e^{itH} = (e^{-itH})^{-1}$,

so e^{-itH} is unitary.

• Since $H^2 = I$, we have $H^n = H$ is n is odd and $H^n = I$ if n is even. It follows that

$$e^{-itH} = I + (-itH) + \frac{1}{2!}(-itH)^2 + \frac{1}{3!}(-itH)^3 + \frac{1}{4!}(-itH)^4 + \dots$$

= $\left(1 - \frac{1}{2!}t^2 + \frac{1}{4!}t^4 + \dots\right)I - i\left(t - \frac{1}{3!}t^3 + \frac{1}{5!}t^5 + \dots\right)H$
= $(\cos t)I - i(\sin t)H.$

Hence,

$$\begin{bmatrix} e^{-itH} \end{bmatrix} = \begin{pmatrix} \cos t & -i\sin t \\ -i\sin t & \cos t \end{pmatrix}.$$

• Explicitly, we have

$$\left(\begin{array}{cc}\cos t & -i\sin t\\ -i\sin t & \cos t\end{array}\right)^* = \left(\begin{array}{cc}\cos t & i\sin t\\ i\sin t & \cos t\end{array}\right),$$

and

and
$$\begin{pmatrix} \cos t & -i\sin t \\ -i\sin t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & i\sin t \\ i\sin t & \cos t \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, so $[e^{-itH}]$ is a unitary matrix.

Problem 2. Define the right and left shift operators S and T on $\ell^2(\mathbb{N})$ by

$$S(x_1, x_2, x_3, x_4, \ldots) = (0, x_1, x_2, x_3, \ldots),$$

$$T(x_1, x_2, x_3, x_4, \ldots) = (x_2, x_3, x_4, x_5, \ldots).$$

(a) Show that $\langle Sx, Sy \rangle = \langle x, y \rangle$ for all $x, y \in \ell^2(\mathbb{N})$. Is S a unitary map on $\ell^2(\mathbb{N})$?

(b) Show that $S^* = T$.

(c) Determine the range and kernel of S and T. Show that both operators have closed range and verify explicitly that

$$\ell^2(\mathbb{N}) = \operatorname{ran} S \oplus \ker S^* = \operatorname{ran} T \oplus \ker T^*$$

(d) Given any $y \in \ell^2(\mathbb{N})$, find all solutions $x \in \ell^2(\mathbb{N})$, if any, of the equations: (i) Sx = y; (ii) Tx = y. Do S, T satisfy the Fredholm alternative?

Solution.

• (a) If $x = (x_n), y = y_n$, then

$$\langle Sx, Sy \rangle = 0 + \overline{x_1}y_1 + \overline{x_2}y_2 + \overline{x_3}y_3 + \ldots = \langle x, y \rangle,$$

so S preserves inner-products and norms. It is not unitary, however, because it is not onto. Equivalently, we have $S^*S = I$, but not $SS^* = I$. (Note that S, T are not normal operators.)

• (b) We compute that

$$\langle x, Sy \rangle = \sum_{n=2}^{\infty} \overline{x_n} y_{n-1} = \sum_{n=1}^{\infty} \overline{x_{n+1}} y_n = \langle Tx, y \rangle.$$

Hence, $S^* = T$. It also follows that $T^* = S$.

• (c) We have

ran
$$S = \{(y_1, y_2, y_3, \ldots) \in \ell^2(\mathbb{N}) \mid y_1 = 0\}, \text{ ker } S = \{0\},$$

ran $T = \ell^2(\mathbb{N}), \text{ ker } T = \{\lambda e_1 \mid \lambda \in \mathbb{C}\},$

where $e_1 = (1, 0, 0, 0, ...)$. It is clear that ran $S = (\ker T)^{\perp}$, so ran S is closed and $\ell^2(\mathbb{N}) = \operatorname{ran} S \oplus \ker S^*$. Also, since ran $T = \ell^2(\mathbb{N})$ and $(\ker T)^* = \{0\}$, the direct sum $\ell^2(\mathbb{N}) = \operatorname{ran} T \oplus \ker T^*$ is trivial.

• The operator S does not satisfy the Fredholm alternative because a solution of $S^*x = 0$ is not unique, but a solution of Sx = y is unique, if it exists at all. The operator T does not satisfy the Fredholm alternative because the only solution of $T^*x = 0$ is x = 0, but a solution of Tx = y is not unique.

Remark. For any map $A : \mathbb{C}^n \to \mathbb{C}^n$, the rank (dimension of the range) of A^* is the same as the rank of A ("row-rank = column rank"), and the nullity (dimension of the nullspace) of A is the same as the nullity of A^* . In particular, A one-to-one if and only if it is onto. As illustrated by S, T these results do not hold for general bounded linear maps on infinite-dimensional spaces, even ones with closed range and finite-dimensional nullspaces.

Problem 3. For $n \in \mathbb{N}$, define the following functions $f_n, g_n, h_n : \mathbb{R} \to \mathbb{R}$:

$$f_n(x) = \begin{cases} \sqrt{n} & \text{if } 0 < x < 1/n, \\ 0 & \text{otherwise;} \end{cases}$$
$$g_n(x) = \begin{cases} n & \text{if } 0 < x < 1/n, \\ 0 & \text{otherwise;} \end{cases}$$
$$h_n(x) = \begin{cases} 1 & \text{if } n < x < n+1, \\ 0 & \text{otherwise.} \end{cases}$$

Show that none of the sequences (f_n) , (g_n) , (h_n) converge strongly in $L^2(\mathbb{R})$. Which sequences converge weakly?

Solution.

• The sequence (f_n) converges weakly to 0. If $\phi : \mathbb{R} \to \mathbb{C}$ is a continuous function with compact support, then

$$\langle f_n, \phi \rangle = \sqrt{n} \int_0^{1/n} \phi(x) \, dx$$

$$= \frac{1}{\sqrt{n}} n \int_0^{1/n} \phi(x) \, dx$$

$$\rightarrow 0 \quad \text{as } n \to \infty,$$

since, by continuity,

$$n \int_0^{1/n} \phi_n(x) \, dx \to \phi(0)$$
 as $n \to \infty$.

We also have that $||f_n|| = 1$ for every $n \in \mathbb{N}$, so the sequence is bounded. Since $C_c(\mathbb{R})$ is dense in $L^2(\mathbb{R})$, we conclude that $f_n \rightharpoonup 0$ as $n \rightarrow \infty$.

- If the sequence (f_n) converged strongly, it would have to converge to the weak limit 0. Since $||f_n|| = 1$ for all $n \in \mathbb{N}$, it does not converge strongly to 0, so the sequence does not converge strongly. (Alternatively, it is easy to check that the sequence is not Cauchy.)
- Computing the L^2 -norm of g_n , we get

$$\|g_n\| = \sqrt{n}.$$

Since the sequence is unbounded, it cannot converge weakly (or strongly).

• If $\phi \in C_c(\mathbb{R})$ then [n, n+1] is disjoint from the support of ϕ for all sufficiently large n, and therefore

$$\langle h_n, \phi \rangle = \int_n^{n+1} \phi(x) \, dx \to 0 \quad \text{as } n \to \infty.$$

Also, $||h_n|| = 1$ for every $n \in \mathbb{N}$, so the sequence is bounded. It follows that $h_n \to 0$. The functions $\{h_n\}$ form an orthonormal set, with $||h_n - h_m|| = \sqrt{2}$ for $n \neq m$, so the sequence is not Cauchy and does not converge strongly.

Remark. This problem illustrate two other typical ways, in addition to 'oscillation' discussed in class, for a sequence of functions to converge weakly but not strongly — 'concentration', for (f_n) , and 'escape to infinity' for (h_n) .