
Complex Analysis

Math 205A, Winter 2014

Final: Solutions

Part I: Short Questions

I.1 [5%] State the Cauchy-Riemann equations for a holomorphic function
f(z) = u(x, y) + iv(x, y).

Solution.

• The Cauchy-Riemann equations are

ux = vy, uy = −vx.

I.2 [5%] Give a formula for the radius of convergence R of the power series
∑∞

n=0 anz
n in terms of the coefficients an.

Solution.

• The Hadamard formula is

R =
1

lim supn→∞ |an|1/n
,

with the usual conventions for 0 and ∞.

I.3 [5%] State Cauchy’s theorem in the most general form you know.

Solution.

• (a) The most general form of Cauchy’s theorem that we proved in class
is the homotopy version: If f : Ω → C is holomorphic in the open set
Ω ⊂ C, and γ1, γ2 : [a, b] → Ω are homotopic, piecewise-C1 curves with
the same endpoints, then

∫

γ1

f dz =

∫

γ2

f dz.

In particular, if γ is a closed curve in Ω that is homotopic to a point,
then

∫

γ

f dz = 0.
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• (b) The more general homology version of Cauchy’s theorem states that
∫

γ
f dz = 0 if γ is homologous to zero in Ω (equivalent to the condition

that the winding number Wγ(c) = 0 for every c ∈ C \ Ω).

I.4 [5%] Define the residue of a meromorphic function f(z) at a pole z0.

Solution.

• Here are three ways to define, or compute, the residue.

(a) Let γ(z0) be a positively oriented, simple closed curve with z0 in its
interior such that f is holomorphic elsewhere in the interior of γ and
on γ. Then

Res(f, z0) =
1

2πi

∫

γ(z0)

f(z) dz.

(b) Suppose that the Laurent expansion of f at z0 is

f(z) =

∞
∑

n=−N

an(z − z0)
n, 0 < |z − z0| < R.

Then Res(f, z0) = a−1.

(c) At a pole of order N ≥ 1,

Res(f, z0) =
1

(N − 1)!
lim
z→z0

dN−1

dN−1

[

(z − z0)
Nf(z)

]

.

In particular, at a simple pole (N = 1),

Res(f, z0) = lim
z→z0

[(z − z0)f(z)] .
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Part II: Longer Questions

II.1 [20%] Suppose that f(z) is an entire function such that

|f(z)| ≤ eRe z for all z ∈ C.

Prove that f(z) = cez for some constant c ∈ C.

Solution.

• The function f(z)/ez is entire and bounded (since ez is entire and
non-zero, and |f(z)| ≤ |ez|), so by Liouville’s theorem it is equal to a
constant.

II.2 [20%] (a) Prove that the series

∞
∑

n=1

1

n2

(

zn

1− zn

)

converges in |z| < 1 to a holomorphic function f : {z ∈ C : |z| < 1} → C,
and in |z| > 1 to a holomorphic function g : {z ∈ C : |z| > 1} → C.

(b) Do you think that g can be obtained from f by analytic continuation
across the unit circle |z| = 1?

Solution.

• (a) Let |z| ≤ r where 0 < r < 1. Then

|1− zn| ≥ 1− |z|n ≥ 1− r,

and
∣

∣

∣

∣

1

n2

(

zn

1− zn

)
∣

∣

∣

∣

≤
(

1

1− r

)

rn

n2
.

The Weierstrass M-test implies that the series converges uniformly on
D̄r = {z ∈ C : |z| ≤ r} by comparison with the convergent series
∑

rn/n2. If K is a non-empty compact subset of the open unit disc
D = {z ∈ C : |z| < 1}, then dist(K, ∂D) = ǫ > 0, so K ⊂ D̄r for
r = 1 − ǫ < 1. Therefore, the series converges uniformly on compact
subsets of D, and by Weierstrass’s theorem the sum f is holomorphic
in D.
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• Similarly, if |z| ≥ R where 1 < R < ∞. Then
∣

∣

∣

∣

1

zn
− 1

∣

∣

∣

∣

≥ 1− 1

|z|n ≥ 1− 1

R
,

and
∣

∣

∣

∣

1

n2

(

zn

1− zn

)
∣

∣

∣

∣

=
1

n2

∣

∣

∣

∣

1

1/zn − 1

∣

∣

∣

∣

≤
(

1

1− 1/R

)

1

n2
.

The Weierstrass M-test implies that the series converges uniformly on
ĒR = {z ∈ C : |z| ≥ R} by comparison with

∑

1/n2. If K is a non-
empty compact subset of E = {z ∈ C : |z| > 1}, then K ⊂ ĒR for
some R > 1, so the series converges uniformly on compact subsets of
E, and the sum g is holomorphic in E.

• (b) The circle |z| = 1 is a natural boundary for both f and g, and one
cannot obtain g by analytic continuation from f .

Remark. To prove the claim in (b), observe that if z0 = eiθ is a regular
point on the boundary |z| = 1, meaning that f continues to a function that
is holomorphic at z0, then limr→1− f(reiθ) exists. Since the set of regular
points is an open subset of the boundary, it is enough to show that there is
a dense set of singular points where f has no analytic continuation. (Note
that the divergence of the series at z = z0 is not sufficient to imply that z0
is a singular point.)

If z0 = e2πip/q is a qth root of unity, where q is prime and 1 ≤ p ≤ q − 1,
and 0 < r < 1, then

f(re2πip/q) =
∑

n≡0

1

n2

(

rn

1− rn

)

+

q−1
∑

k=1

∞
∑

n≡k

1

n2

(

rnωpk

1− rnωpk

)

,

where n ≡ k means modulo q, and ω = e2πi/q. Since ωpk 6= 1, we have

rn

1− rn
≥

(

1

1− r

)

rn

n
,

∣

∣

∣

∣

rnωpk

1− rnωpk

∣

∣

∣

∣

≤ 1

|1− ω| ,

so
∣

∣f(re2πip/q)
∣

∣ ≥ 1

1− r

∑

n≡0

rn

n3
− 1

|1− ω|
∑

n 6≡0

1

n2
.

It follows that
∣

∣f(re2πip/q)
∣

∣ → ∞ as r → 1−, which proves that z0 is a singular
point.
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II.3 [20%] (a) Define the Weierstrass ℘-function.

(b) The Korteweg-de Vries (KdV) equation is the following nonlinear partial
differential equation for u(x, t):

ut + 6uux + uxxx = 0.

Look for traveling wave solutions u(x, t) = f(x − ct) of the KdV equation,
where c is a constant, and find a differential equation satisfied by f(ξ). Show
that periodic traveling wave solutions can be expressed in terms of the ℘-
function.

Hint. You can assume the differential equation for the ℘-function,

(℘′)
2
= 4℘3 − g2℘− g3.

Solution.

• (a) Let ω1, ω2 ∈ C \ {0}, with ω2/ω1 /∈ R, and let

Λ = {n1ω + n2ω2 : n1, n2 ∈ Z}

denote the associated lattice. Then

℘(z) =
1

z2
+

∑

ω∈Λ\{0}

[

1

(z − ω)2
− 1

ω2

]

.

• (b) Using u = f(c− ct) in the KdV equation, we get the ODE

−cf ′ + 6ff ′ + f ′′′ = 0.

One integration gives

f ′′ + 3f 2 − cf + c1 = 0,

where c1 is a constant of integration. Multiplying this equation by f ′

and integrating again, we get

(f ′)2 + 2f 3 − cf 2 + 2c1f + c2 = 0.
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• The change of variable

f(z) = −2F (z) +
c

6
,

puts this equation in the form

(F ′)2 = 4F 3 − g2F
2 − g3,

where g2, g3 are constants (which depend on c, c1, c2).

• It follows that a solution is F (z) = ℘(z + a), where a is an arbitrary
constant, so

f(z) = −2℘(z + a) +
c

6
.

• Alternatively, instead of integrating the ODE for f , you can differenti-
ate the ODE for ℘.

Remark. The connection between the KdV equation and elliptic curves
indicated here is the tip of a large iceberg. The KdV equation is a com-
pletely integrable soliton PDE and it turns out to have deep connections
with algebraic geometry and Riemann surfaces.
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II.4 [20%] Define a meromorphic function f on C by

f(z) =
e−z2/2

1 + e−az
, a =

√
π(1 + i).

(a) Show that

f(z)− f(z + a) = e−z2/2.

(b) Use the residue theorem to evaluate

∫

γR

f(z) dz,

where the contour γR is the rectangle with corners at −R, R, R + i
√
π, and

−R + i
√
π. Assume that R >

√
π/2.

(c) Take the limit as R → ∞ and deduce the value of the Gaussian integral

∫ ∞

−∞
e−x2/2 dx =

√
2π.

Solution.

• (a) We have

a =
√
2πeiπ/4, a2 = 2πi, e−a2/2 = −1.

It follows that

f(z)− f(z + a) =
e−z2/2

1 + e−az
− e−z2/2−az−a2/2

1 + e−az−a2

= e−z2/2

[

1

1 + e−az
+

e−az

1 + e−az

]

= e−z2/2.

(b) The function f(z) has poles at points z such that e−az = −1, or
az = (2n+1)πi for n ∈ Z. Equivalently, z = (2n+1)a/2, and the only
pole inside the contour γR is at z = a/2.
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• Using l’Hôspital’s rule, we find that z = a/2 is a simple pole with
residue

Res(f, a/2) = lim
z→a/2

[

(z − a/2)
e−z2/2

1 + e−az

]

= e−a2/8 lim
z→a/2

[

z − a/2

1 + e−az

]

= e−iπ/4 lim
z→a/2

[

1

−ae−az

]

=
e−iπ/4

−ae−a2/2

=
−i√
2π

.

The residue theorem implies that
∫

γR

f(z) dz = 2πiRes(f, a/2) =
√
2π.

• (c) We have

∫

γR

f(z) dz =

∫ R

−R

[

f(x)− f(x+ i
√
π)
]

dx+ IR,

where

IR = i

∫

√
π

0

[f(R + iy)− f(−R + iy)] dy.

• For 0 ≤ y ≤ √
π and R ≥ 2

√
π, say, we estimate

|f(R + iy)| ≤ |e−(R+iy)2/2|
1− |e−a(R+iy)| ≤

e−(R2−y2)/2

1− e−
√
π(R−y)

≤ Ce−R2/2,

|f(−R + iy)| ≤ |e−(R−iy)2/2|
|ea(R−iy)| − 1

≤ e−(R2−y2)/2

e
√
π(R+y) − 1

≤ Ce−R2/2.

Thus, the integrand in IR converges uniformly to zero and IR → 0 as
R → ∞. It follows that

∫ ∞

−∞

[

f(x)− f(x+ i
√
π)
]

dx = lim
R→∞

∫

γR

f(z) dz =
√
2π.
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• Changing variables x 7→ x+
√
π, we can write

∫ ∞

−∞
f(x+ i

√
π) dx =

∫ ∞

−∞
f(x+

√
π(1 + i)) dx

=

∫ ∞

−∞
f(x+ a) dx.

Using this result and (a) in the previous equation, we get that

∫ ∞

−∞
e−x2/2 dx =

∫ ∞

−∞
[f(x)− f(x+ a)] dx =

√
2π.

Remark. Since e−z2/2 is an entire function, it’s not obvious how one can
use contour integration and the method of residues to evaluate the Gaussian
integral. Ways to do this, like the one here, seem to have been discovered
only as recently as the 1940s.
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Part III: Extra Credit

III.1 [5%] Define the Riemann zeta function ζ(s). Prove that the only zeros
of ζ(s) occur at s = −2,−4,−6, . . . or on the line Re s = 1/2.

Solution.

• The Riemann zeta function is defined in the right-half plane Res > 1
by the series

ζ(s) =

∞
∑

n=1

1

ns
,

which converges uniformly and absolutely on compact subsets of the
half-plane to a holomorphic function.

• This function extends to a meromorphic function on C with a simple
pole at s = 1; for example, by use of the functional equation

Γ
(s

2

)

π−s/2ζ(s) = Γ

(

1− s

2

)

π−(1−s)/2ζ(1− s).
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