Problem Set 3

Math 205B: Spring Quarter, 2014

1. If $U \subset \mathbb{C}$ is an open set, prove that every two curves in U with the same endpoints are fixed-end-point homotopic if and only if every closed curve is homotopic to a constant curve.
2. Let $U=\{z \in \mathbb{C}:|z|<1\}$ be the unit disc and $f(z)=z \sqrt{1+z}$, with the principal branch of the square-root. Describe the Riemann surface that is obtained from analytic continuation of the function element (f, U). How many points in the Riemann surface lie above $z=0$? Explain your answer.
3. (a) Let $0<R(a)<\infty$ denote the radius of convergence of a power series at $a \in \mathbb{C}$, and suppose that $|b-a|<\frac{1}{2} R(a)$. Prove that the radius of convergence $R(b)$ of the power series at b of the analytic continuation of the power series at a satisfies $|R(a)-R(b)| \leq|a-b|$. (You can assume standard facts about the convergence of power series.)
(b) Deduce that if a holomorphic germ has an analytic continuation along a curve $\gamma:[0,1] \rightarrow \mathbb{C}$, then the analytic continuation can always be obtained by analytic continuation along a finite chain of discs.
(c) Show that if \mathbf{f} is the complete analytic continuation of a holomorphic germ f_{a}, then the collection of germs $\left\{f_{z} \in \mathbf{f}\right\}$ is countable for every $z \in \mathbb{C}$. Hint. Continue analytically by discs with rational centers.
4. (a) Consider a linear ODE

$$
a(z) f^{\prime \prime}+b(z) f^{\prime}+c(z)=0
$$

where the coefficients a, b, c are entire functions. Show that if a function element (f, U) satisfies this ODE in U, then every analytic continuation (g, V) of (f, U) satisfies the ODE in V.
(b) Solve the ODE

$$
z^{2} f^{\prime \prime}-z f^{\prime}+f=0
$$

and discuss what happens when solutions are continued analytically around the unit circle $\gamma:[0,1] \rightarrow \mathbb{C}, \gamma(t)=e^{2 \pi i t}$.

