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CHAPTER 5

Product Measures

Given two measure spaces, we may construct a natural measure on their Carte-
sian product; the prototype is the construction of Lebesgue measure on R2 as the
product of Lebesgue measures on R. The integral of a measurable function on
the product space may be evaluated as iterated integrals on the individual spaces
provided that the function is positive or integrable (and the measure spaces are
σ-finite). This result, called Fubini’s theorem, is another one of the basic and most
useful properties of the Lebesgue integral. We will not give complete proofs of all
the results in this Chapter.

5.1. Product σ-algebras

We begin by describing product σ-algebras. If (X,A) and (Y,B) are measurable
spaces, then a measurable rectangle is a subset A×B of X × Y where A ∈ A and
B ∈ B are measurable subsets of X and Y , respectively. For example, if R is
equipped with its Borel σ-algebra, then Q×Q is a measurable rectangle in R×R.
(Note that the ‘sides’ A, B of a measurable rectangle A × B ⊂ R × R can be
arbitrary measurable sets; they are not required to be intervals.)

Definition 5.1. Suppose that (X,A) and (Y,B) are measurable spaces. The prod-
uct σ-algebra A ⊗ B is the σ-algebra on X × Y generated by the collection of all
measurable rectangles,

A⊗ B = σ ({A×B : A ∈ A, B ∈ B}) .
The product of (X,A) and (Y,B) is the measurable space (X × Y,A⊗ B).

Suppose that E ⊂ X × Y . For any x ∈ X and y ∈ Y , we define the x-section
Ex ⊂ Y and the y-section Ey ⊂ X of E by

Ex = {y ∈ Y : (x, y) ∈ E} , Ey = {x ∈ X : (x, y) ∈ E} .
As stated in the next proposition, all sections of a measurable set are measurable.

Proposition 5.2. If (X,A) and (Y,B) are measurable spaces and E ∈ A⊗B, then
Ex ∈ B for every x ∈ X and Ey ∈ A for every y ∈ Y .

Proof. Let

M = {E ⊂ X × Y : Ex ∈ B for every x ∈ X and Ey ∈ A for every y ∈ Y } .
ThenM contains all measurable rectangles, since the x-sections of A×B are either
∅ or B and the y-sections are either ∅ or A. Moreover,M is a σ-algebra since, for
example, if E,Ei ⊂ X × Y and x ∈ X, then

(Ec)x = (Ex)c,

( ∞⋃
i=1

Ei

)
x

=

∞⋃
i=1

(Ei)x .
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56 5. PRODUCT MEASURES

It follows that M⊃ A⊗B, which proves the proposition. �

As an example, we consider the product of Borel σ-algebras on Rn.

Proposition 5.3. Suppose that Rm, Rn are equipped with their Borel σ-algebras
B(Rm), B(Rn) and let Rm+n = Rm × Rn. Then

B(Rm+n) = B(Rm)⊗ B(Rn).

Proof. Every (m+n)-dimensional rectangle, in the sense of Definition 2.1, is
a product of an m-dimensional and an n-dimensional rectangle. Therefore

B(Rm)⊗ B(Rn) ⊃ R(Rm+n)

where R(Rm+n) denotes the collection of rectangles in Rm+n. From Proposi-
tion 2.21, the rectangles generate the Borel σ-algebra, and therefore

B(Rm)⊗ B(Rn) ⊃ B(Rm+n).

To prove the the reverse inclusion, let

M = {A ⊂ Rm : A× Rn ∈ B(Rm+n)} .
Then M is a σ-algebra, since B(Rm+n) is a σ-algebra and

Ac × Rn = (A× Rn)
c
,

( ∞⋃
i=1

Ai

)
× Rn =

∞⋃
i=1

(Ai × Rn) .

Moreover, M contains all open sets, since G × Rn is open in Rm+n if G is open
in Rm. It follows that M ⊃ B(Rm), so A × Rn ∈ B(Rm+n) for every A ∈ B(Rm),
meaning that

B(Rm+n) ⊃ {A× Rn : A ∈ B(Rm)} .
Similarly, we have

B(Rm+n) ⊃ {Rn ×B : B ∈ B(Rn)} .
Therefore, since B(Rm+n) is closed under intersections,

B(Rm+n) ⊃ {A×B : A ∈ B(Rm), B ∈ B(Rn)} ,
which implies that

B(Rm+n) ⊃ B(Rm)⊗ B(Rn).

�

By the repeated application of this result, we see that the Borel σ-algebra on
Rn is the n-fold product of the Borel σ-algebra on R. This leads to an alternative
method of constructing Lebesgue measure on Rn as a product of Lebesgue measures
on R, instead of the direct construction we gave earlier.

5.2. Premeasures

Premeasures provide a useful way to generate outer measures and measures,
and we will use them to construct product measures. In this section, we derive
some general results about premeasures and their associated measures that we use
below. Premeasures are defined on algebras, rather than σ-algebras, but they are
consistent with countable additivity.

Definition 5.4. An algebra on a set X is a collection of subsets of X that contains
∅ and X and is closed under complements, finite unions, and finite intersections.
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If F ⊂ P(X) is a family of subsets of a set X, then the algebra generated by F is
the smallest algebra that contains F . It is much easier to give an explicit description
of the algebra generated by a family of sets F than the σ-algebra generated by F .
For example, if F has the property that for A,B ∈ F , the intersection A ∩ B ∈ F
and the complement Ac is a finite union of sets belonging to F , then the algebra
generated by F is the collection of all finite unions of sets in F .

Definition 5.5. Suppose that E is an algebra of subsets of a set X. A premeasure
λ on E , or on X if the algebra is understood, is a function λ : E → [0,∞] such that:

(a) λ(∅) = 0;
(b) if {Ai ∈ E : i ∈ N} is a countable collection of disjoint sets in E such that

∞⋃
i=1

Ai ∈ E ,

then

λ

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

λ (Ai) .

Note that a premeasure is finitely additive, since we may take Ai = ∅ for
i ≥ N , and monotone, since if A ⊃ B, then λ(A) = λ(A \B) + λ(B) ≥ λ(B).

To define the outer measure associated with a premeasure, we use countable
coverings by sets in the algebra.

Definition 5.6. Suppose that E is an algebra on a set X and λ : E → [0,∞] is a
premeasure. The outer measure λ∗ : P(X) → [0,∞] associated with λ is defined
for E ⊂ X by

λ∗(E) = inf

{ ∞∑
i=1

λ(Ai) : E ⊂
⋃∞

i=1Ai where Ai ∈ E

}
.

As we observe next, the set-function λ∗ is an outer measure. Moreover, every
set belonging to E is λ∗-measurable and its outer measure is equal to its premeasure.

Proposition 5.7. The set function λ∗ : P(X) → [0,∞] given by Definition 5.6.
is an outer measure on X. Every set A ∈ E is Carathéodory measurable and
λ∗(A) = λ(A).

Proof. The proof that λ∗ is an outer measure is identical to the proof of
Theorem 2.4 for outer Lebesgue measure.

If A ∈ E , then λ∗(A) ≤ λ(A) since A covers itself. To prove the reverse
inequality, suppose that {Ai : i ∈ N} is a countable cover of A by sets Ai ∈ E . Let
B1 = A ∩A1 and

Bj = A ∩

(
Aj \

j−1⋃
i=1

Ai

)
for j ≥ 2.

Then Bj ∈ A and A is the disjoint union of {Bj : j ∈ N}. Since Bj ⊂ Aj , it follows
that

λ(A) =

∞∑
j=1

λ(Bj) ≤
∞∑
j=1

λ(Aj),

which implies that λ(A) ≤ λ∗(A). Hence, λ∗(A) = λ(A).
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If E ⊂ X, A ∈ E , and ε > 0, then there is a cover {Bi ∈ E : i ∈ N} of E such
that

λ∗(E) + ε ≥
∞∑
i=1

λ(Bi).

Since λ is countably additive on E ,

λ∗(E) + ε ≥
∞∑
i=1

λ(Bi ∩A) +

∞∑
i=1

λ(Bi ∩Ac) ≥ λ∗(E ∩A) + λ∗(E ∩Ac),

and since ε > 0 is arbitrary, it follows that λ∗(E) ≥ λ∗(E ∩A) +λ∗(E ∩Ac), which
implies that A is measurable. �

Using Theorem 2.9, we see from the preceding results that every premeasure on
an algebra E may be extended to a measure on σ(E). A natural question is whether
such an extension is unique. In general, the answer is no, but if the measure space
is not ‘too big,’ in the following sense, then we do have uniqueness.

Definition 5.8. Let X be a set and λ a premeasure on an algebra E ⊂ P(X).
Then λ is σ-finite if X =

⋃∞
i=1Ai where Ai ∈ E and λ(Ai) <∞.

Theorem 5.9. If λ : E → [0,∞] is a σ-finite premeasure on an algebra E and A is
the σ-algebra generated by E, then there is a unique measure µ : A → [0,∞] such
that µ(A) = λ(A) for every A ∈ E.

5.3. Product measures

Next, we construct a product measure on the product of measure spaces that
satisfies the natural condition that the measure of a measurable rectangle is the
product of the measures of its ‘sides.’ To do this, we will use the Carathéodory
method and first define an outer measure on the product of the measure spaces in
terms of the natural premeasure defined on measurable rectangles. The procedure
is essentially the same as the one we used to construct Lebesgue measure on Rn.

Suppose that (X,A) and (Y,B) are measurable spaces. The intersection of
measurable rectangles is a measurable rectangle

(A×B) ∩ (C ×D) = (A ∩ C)× (B ∩D),

and the complement of a measurable rectangle is a finite union of measurable rect-
angles

(A×B)c = (Ac ×B) ∪ (A×Bc) ∪ (Ac ×Bc).

Thus, the collection of finite unions of measurable rectangles in X × Y forms an
algebra, which we denote by E . This algebra is not, in general, a σ-algebra, but
obviously it generates the same product σ-algebra as the measurable rectangles.

Every set E ∈ E may be represented as a finite disjoint union of measurable
rectangles, though not necessarily in a unique way. To define a premeasure on E ,
we first define the premeasure of measurable rectangles.

Definition 5.10. If (X,A, µ) and (Y,B, ν) are measure spaces, then the product
premeasure λ(A×B) of a measurable rectangle A×B ⊂ X × Y is given by

λ(A×B) = µ(A)ν(B)

where 0 · ∞ = 0.
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The premeasure λ is countably additive on rectangles. The simplest way to
show this is to integrate the characteristic functions of the rectangles, which allows
us to use the monotone convergence theorem.

Proposition 5.11. If a measurable rectangle A× B is a countable disjoint union
of measurable rectangles {Ai ×Bi : i ∈ N}, then

λ(A×B) =

∞∑
i=1

λ(Ai ×Bi).

Proof. If

A×B =

∞⋃
i=1

(Ai ×Bi)

is a disjoint union, then the characteristic function χA×B : X×Y → [0,∞) satisfies

χA×B(x, y) =

∞∑
i=1

χAi×Bi
(x, y).

Therefore, since χA×B(x, y) = χA(x)χB(y),

χA(x)χB(y) =

∞∑
i=1

χAi
(x)χBi

(y).

Integrating this equation over Y for fixed x ∈ X and using the monotone conver-
gence theorem, we get

χA(x)ν(B) =

∞∑
i=1

χAi(x)ν(Bi).

Integrating again with respect to x, we get

µ(A)ν(B) =

∞∑
i=1

µ(Ai)ν(Bi),

which proves the result. �

In particular, it follows that λ is finitely additive on rectangles and therefore
may be extended to a well-defined function on E . To see this, note that any two
representations of the same set as a finite disjoint union of rectangles may be de-
composed into a common refinement such that each of the original rectangles is a
disjoint union of rectangles in the refinement. The following definition therefore
makes sense.

Definition 5.12. Suppose that (X,A, µ) and (Y,B, ν) are measure spaces and E
is the algebra generated by the measurable rectangles. The product premeasure
λ : E → [0,∞] is given by

λ (E) =

N∑
i=1

µ(Ai)ν(Bi), E =

N⋃
i=1

Ai ×Bi

where E =
⋃N

i=1Ai × Bi is any representation of E ∈ E as a disjoint union of
measurable rectangles.
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Proposition 5.11 implies that λ is countably additive on E , since we may de-
compose any countable disjoint union of sets in E into a countable common disjoint
refinement of rectangles, so λ is a premeasure as claimed. The outer product mea-
sure associated with λ, which we write as (µ⊗ ν)∗, is defined in terms of countable
coverings by measurable rectangles. This gives the following.

Definition 5.13. Suppose that (X,A, µ) and (Y,B, ν) are measure spaces. Then
the product outer measure

(µ⊗ ν)∗ : P(X × Y )→ [0,∞]

on X × Y is defined for E ⊂ X × Y by

(µ⊗ ν)∗(E) = inf

{ ∞∑
i=1

µ(Ai)ν(Bi) : E ⊂
⋃∞

i=1(Ai ×Bi) where Ai ∈ A, Bi ∈ B

}
.

The product measure

(µ⊗ ν) : A⊗ B → [0,∞], (µ⊗ ν) = (µ⊗ ν)∗|A⊗B
is the restriction of the product outer measure to the product σ-algebra.

It follows from Proposition 5.7 that (µ ⊗ ν)∗ is an outer measure and every
measurable rectangle is (µ ⊗ ν)∗-measurable with measure equal to its product
premeasure. We summarize the conclusions of the Carátheodory theorem and The-
orem 5.9 in the case of product measures as the following result.

Theorem 5.14. If (X,A, µ) and (Y,B, ν) are measure spaces, then

(µ⊗ ν) : A⊗ B → [0,∞]

is a measure on X × Y such that

(µ⊗ ν)(A×B) = µ(A)ν(B) for every A ∈ A, B ∈ B.
Moreover, if (X,A, µ) and (Y,B, ν) are σ-finite measure spaces, then (µ⊗ ν) is the
unique measure on A⊗ B with this property.

Note that, in general, the σ-algebra of Carathéodory measurable sets associated
with (µ⊗ ν)∗ is strictly larger than the product σ-algebra. For example, if Rm and
Rn are equipped with Lebesgue measure defined on their Borel σ-algebras, then the
Carathéodory σ-algebra on the product Rm+n = Rm×Rn is the Lebesgue σ-algebra
L(Rm+n), whereas the product σ-algebra is the Borel σ-algebra B(Rm+n).

5.4. Measurable functions

If f : X×Y → C is a function of (x, y) ∈ X×Y , then for each x ∈ X we define
the x-section fx : Y → C and for each y ∈ Y we define the y-section fy : Y → C
by

fx(y) = f(x, y), fy(x) = f(x, y).

Theorem 5.15. If (X,A, µ), (Y,B, ν) are measure spaces and f : X × Y → C is
a measurable function, then fx : Y → C, fy : X → C are measurable for every
x ∈ X, y ∈ Y . Moreover, if (X,A, µ), (Y,B, ν) are σ-finite, then the functions
g : X → C, h : Y → C defined by

g(x) =

∫
fx dν, h(y) =

∫
fy dµ

are measurable.
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5.5. Monotone class theorem

We prove a general result about σ-algebras, called the monotone class theorem,
which we will use in proving Fubini’s theorem. A collection of subsets of a set
is called a monotone class if it is closed under countable increasing unions and
countable decreasing intersections.

Definition 5.16. A monotone class on a set X is a collection C ⊂ P(X) of subsets
of X such that if Ei, Fi ∈ C and

E1 ⊂ E2 ⊂ · · · ⊂ Ei ⊂ . . . , F1 ⊃ F2 ⊃ · · · ⊃ Fi ⊃ . . . ,

then
∞⋃
i=1

Ei ∈ C,
∞⋂
i=1

Fi ∈ C.

Obviously, every σ-algebra is a monotone class, but not conversely. As with
σ-algebras, every family F ⊂ P(X) of subsets of a set X is contained in a smallest
monotone class, called the monotone class generated by F , which is the intersection
of all monotone classes on X that contain F . As stated in the next theorem, if F
is an algebra, then this monotone class is, in fact, a σ-algebra.

Theorem 5.17 (Monotone Class Theorem). If F is an algebra of sets, the mono-
tone class generated by F coincides with the σ-algebra generated by F .

5.6. Fubini’s theorem

Theorem 5.18 (Fubini’s Theorem). Suppose that (X,A, µ) and (Y,B, ν) are σ-
finite measure spaces. A measurable function f : X × Y → C is integrable if and
only if either one of the iterated integrals∫ (∫

|fy| dµ
)
dν,

∫ (∫
|fx| dν

)
dµ

is finite. In that case∫
f dµ⊗ dν =

∫ (∫
fy dµ

)
dν =

∫ (∫
fx dν

)
dµ.

Example 5.19. An application of Fubini’s theorem to counting measure on N ×
N implies that if {amn ∈ C | m,n ∈ N} is a doubly-indexed sequence of complex
numbers such that

∞∑
m=1

( ∞∑
n=1

|amn|

)
<∞

then
∞∑

m=1

( ∞∑
n=1

amn

)
=

∞∑
n=1

( ∞∑
m=1

amn

)
.

5.7. Completion of product measures

The product of complete measure spaces is not necessarily complete.
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Example 5.20. If N ⊂ R is a non-Lebesgue measurable subset of R, then {0}×N
does not belong to the product σ-algebra L(R)⊗L(R) on R2 = R×R, since every
section of a set in the product σ-algebra is measurable. It does, however, belong to
L(R2), since it is a subset of the set {0} ×R of two-dimensional Lebesgue measure
zero, and Lebesgue measure is complete. Instead one can show that the Lebesgue
σ-algebra on Rm+n is the completion with respect to Lebesgue measure of the
product of the Lebesgue σ-algebras on Rm and Rn:

L(Rm+n) = L(Rm)⊗ L(Rn).

We state a version of Fubini’s theorem for Lebesgue measurable functions on
Rn.

Theorem 5.21. A Lebesgue measurable function f : Rm+n → C is integrable,
meaning that ∫

Rm+n

|f(x, y)| dxdy <∞,

if and only if either one of the iterated integrals∫
Rn

(∫
Rm

|f(x, y)| dx
)
dy,

∫
Rm

(∫
Rn

|f(x, y)| dy
)
dx

is finite. In that case,∫
Rm+n

f(x, y) dxdy =

∫
Rn

(∫
Rm

f(x, y) dx

)
dy =

∫
Rm

(∫
Rn

f(x, y) dy

)
dx,

where all of the integrals are well-defined and finite a.e.
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