Problem Set 4: Math 206 Spring Quarter, 2011

1. If $f_1 \ge f_2 \ge f_3 \ge \ldots$ is a monotone decreasing sequence of extended real-valued functions on a measure space and $\int f_1 d\mu < \infty$, show that

$$\lim_{n \to \infty} \int f_n \, d\mu = \int \lim_{n \to \infty} f_n \, d\mu.$$

Give an example to show this result need not be true if we omit the assumption that f_1 is integrable.

2. Prove the following generalization of the dominated convergence theorem: Let $\{f_n\}$ be a sequence of measurable, real-valued functions such that $f_n \to f$ pointwise as $n \to \infty$. If $|f_n| \leq g_n$, where g_n is integrable and

$$\lim_{n \to \infty} \int g_n \, d\mu = \int g \, d\mu$$

for some integrable function g, then

$$\lim_{n \to \infty} \int |f_n - f| \, d\mu = 0.$$

3. If f_n , f are integrable functions such that $f_n \to f$ uniformly on a finite measure space X, prove that $\int f_n d\mu \to \int f d\mu$. Use Egoroff's theorem (Problem 4 in Set 3) and the absolute continuity of the integral proved in class to give an alternative proof of the dominated convergence theorem.

4. Let $\{f_n\}$ be a sequence of measurable, real-valued functions on a measure space X such that $f_n \to f$ pointwise, where $f: X \to \mathbb{R}$, and suppose that for some constant M > 0

$$\int |f_n| \, d\mu \le M \qquad \text{for all } n \in \mathbb{N}.$$

(a) Show that

$$\int |f| \, d\mu \leq M.$$

Give an example to show that we may have $\int |f_n| d\mu = M$ for every $n \in \mathbb{N}$ but $\int |f| d\mu < M$.

(b) Show that

$$\lim_{n \to \infty} \int ||f_n| - |f| - |f_n - f|| \ d\mu = 0.$$

HINT. Show that $||a + b| - |b|| \le |a|$. (This quantifies the 'loss' of mass in the integral when $n \to \infty$.)

5. Let (X, \mathcal{A}, μ) be a complete measure space with finite measure, $\mu(X) < \infty$. Denote by M(X) the space of (equivalence classes of) measurable functions $f : X \to \mathbb{R}$, where we identify functions that are equal μ -a.e.. For $f, g \in M(X)$, define

$$d(f,g) = \int_X \frac{|f-g|}{1+|f-g|} \, d\mu.$$

(a) Show that d is a metric on M(X).

(b) A sequence $f_n \to f$ converges in measure if for every $\epsilon > 0$

$$\lim_{n \to \infty} \mu\left(\left\{x \in X : \left|f_n(x) - f(x)\right| > \epsilon\right\}\right) = 0.$$

Show that $f_n \to f$ in measure if and only if $d(f_n, f) \to 0$ as $n \to \infty$.