
CHAPTER 1

Introduction

We will begin by discussing some general properties of initial value problems
(IVPs) for ordinary differential equations (ODEs) as well as the basic underlying
mathematical theory.

1.1. First-order systems of ODEs

Does the Flap of a Butterfly’s
Wings in Brazil Set off a Tornado
in Texas?

Edward Lorenz, 1972

We consider an autonomous system of first-order ODEs of the form

(1.1) xt = f(x)

where x(t) ∈ Rd is a vector of dependent variables, f : Rd → Rd is a vector field,
and xt is the time-derivative, which we also write as dx/dt or ẋ. In component
form, x = (x1, . . . , xd),

f(x) = (f1(x1 . . . , xd), . . . , fn(x1, . . . xd)) ,

and the system is

x1t = f1(x1 . . . , xd),

x2t = f2(x1 . . . , xd),

. . . ,

xdt = fd(x1 . . . , xd).

We may regard (1.1) as describing the evolution in continuous time t of a dynamical
system with finite-dimensional state x(t) of dimension d.

Autonomous ODEs arise as models of systems whose laws do not change in
time. They are invariant under translations in time: if x(t) is a solution, then so is
x(t+ t0) for any constant t0.

Example 1.1. The Lorenz system for (x, y, z) ∈ R3 is

xt = σ(y − x),

yt = rx− y − xz,
zt = xy − βz.

(1.2)

The system depends on three positive parameters σ, r, β; a commonly studied case
is σ = 10, r = 28, and β = 4/3. Lorenz (1963) obtained (1.2) as a truncated model
of thermal convection in a fluid layer, where σ has the interpretation of a Prandtl
number(the ratio of kinematic viscosity and thermal diffusivity), r corresponds to
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a Rayleigh number, which is a dimensionless parameter proportional to the tem-
perature difference across the fluid layer and the gravitational acceleration acting
on the fluid, and β is a ratio of the height and width of the fluid layer.

Lorenz discovered that solutions of (1.2) may behave chaotically, showing that
even low-dimensional nonlinear dynamical systems can behave in complex ways.
Solutions of chaotic systems are sensitive to small changes in the initial conditions,
and Lorenz used this model to discuss the unpredictability of weather (the “butterfly
effect”).

If x̄ ∈ Rd is a zero of f , meaning that

(1.3) f(x̄) = 0,

then (1.1) has the constant solution x(t) = x̄. We call x̄ an equilibrium solution,
or steady state solution, or fixed point of (1.1). An equilibrium may be stable or
unstable, depending on whether small perturbations of the equilibrium decay —
or, at least, remain bounded — or grow. (See Definition 1.14 below for a precise
definition.) The determination of the stability of equilibria will be an important
topic in the following.

Other types of ODEs can be put in the form (1.1). This rewriting does not
simplify their analysis, and may obscure the specific structure of the ODEs, but it
shows that (1.1) is rather a general form.

Example 1.2. A non-autonomous system for x(t) ∈ Rd has the form

(1.4) xt = f(x, t)

where f : Rd × R → Rd. A nonautonomous ODE describes systems governed by
laws that vary in time e.g. due to external influences. Equation (1.4) can be written
as an autonomous (‘suspended’) system for y = (x, s) ∈ Rn+1 with s = t as

xt = f(x, s), st = 1.

Note that this increases the order of the system by one, and even if the original
system has an equilibrium solution x(t) = x̄ such that f(x̄, t) = 0, the suspended
system has no equilibrium solutions for y.

Higher-order ODEs can be written as first order systems by the introduction
of derivatives as new dependent variables.

Example 1.3. A second-order system for x(t) ∈ Rd of the form

(1.5) xtt = f(x, xt)

can be written as a first-order system for z = (x, y) ∈ R2d with y = xt as

xt = y, yt = f(x, y).

Note that this doubles the dimension of the system.

Example 1.4. In Newtonian mechanics, the position x(t) ∈ Rd of a particle
of mass m moving in d space dimensions in a spatially-dependent force-field F (x),
such as a planet in motion around the sun, satisfies

mxtt = F (x).
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If p = mxt is the momentum of the particle, then (x, p) satisfies the first-order
system

(1.6) xt =
1

m
p, pt = F (x).

A conservative force-field is derived from a potential V : Rd → R,

F = −∂V
∂x

, (F1, . . . , Fd) =

(
∂V

∂x1
, . . . ,

∂V

∂xd

)
.

We use ∂/∂x, ∂/∂p to denote the derivatives, or gradients with respect to x, p
respectively. In that case, (1.6) becomes the Hamiltonian system

(1.7) xt =
∂H

∂p
, pt = −∂H

∂x

where the Hamiltonian

H(x, p) =
1

2m
p2 + V (x)

is the total energy (kinetic + potential) of the particle. The Hamiltonian is a
conserved quantity of (1.7), since by the chain rule

d

dt
H (x(t), p(t)) =

∂H

∂x
· dx
dt

+
∂H

∂p
· dx
dt

= −∂H
∂x
· ∂H
∂p

+
∂H

∂p
· ∂H
∂x

= 0.

Thus, solutions (x, p) of (1.7) lie on the level surfaces H(x, p) = constant.

1.2. Existence and uniqueness theorem for IVPs

An initial value problem (IVP) for (1.1) consists of solving the ODE subject to
an initial condition (IC) for x:

xt = f(x),

x(0) = x0.
(1.8)

Here, x0 ∈ Rd is a given constant vector. For an autonomous system, there is no
loss of generality in imposing the initial condition at t = 0, rather than some other
time t = t0.

For a first-order system, we impose initial data for x. For a second-order system,
such as (1.5), we impose initial data for x and xt, and analogously for higher-
order systems. The ODE in (1.8) determines xt(0) from x0, and we can obtain
all higher order derivatives x(n)(0) by differentiating the equation with respect to
t and evaluating the result at t = 0. Thus, it reasonable to expect that (1.8)
determines a unique solution, and this is indeed true provided that f(x) satisfies a
mild smoothness condition, called Lipschitz continuity, which is nearly always met
in applications. Before stating the existence-uniqueness theorem, we explain what
Lipschitz continuity means.

We denote by

|x| =
√
x21 + · · ·+ x2d

the Euclidean norm of a vector x ∈ Rd.
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Definition 1.5. A function f : Rd → Rd is locally Lipschitz continuous on Rd,
or Lipschitz continuous for short, if for every R > 0 there exists a constant M > 0
such that

|f(x)− f(y)| ≤M |x− y| for all x, y ∈ Rd such that |x|, |y| ≤ R.
We refer to M as a Lipschitz constant for f .

A sufficient condition for f = (f1, . . . , fd) to be a locally Lipschitz continuous
function of x = (x1, . . . , xd) is that f is continuous differentiable (C1), meaning
that all its partial derivatives

∂fi
∂xj

, 1 ≤ i, j ≤ d

exist and are continuous functions.
To show this, note that from the fundamental theorem of calculus

f(x)− f(y) =

∫ 1

0

d

ds
f (y + s(x− y)) ds

=

∫ 1

0

Df (y + s(x− y)) (x− y) ds.

Here Df is the derivative of f , whose matrix is the Jacobian matrix of f with
components ∂fi/∂xj . Hence

|f(x)− f(y)| ≤
∫ 1

0

|Df (y + s(x− y)) (x− y)| ds

≤
(∫ 1

0

‖Df (y + s(x− y))‖ ds
)
|x− y|

≤M |x− y|

where ‖Df‖ denotes the Euclidean matrix norm of Df and

M = max
0≤s≤1

‖Df (y + s(x− y))‖ .

For scalar-valued functions, this result also follows from the mean value theorem.

Example 1.6. The function f : R→ R defined by f(x) = x2 is locally Lipschitz
continuous on R, since it is continuously differentiable. The function g : R → R
defined by g(x) = |x| is Lipschitz continuous, although it is not differentiable at
x = 0. The function h : R→ R defined by h(x) = |x|1/2 is not Lipschitz continuous
at x = 0, although it is continuous.

The following result, due to Picard and Lindelöf, is the fundamental local ex-
istence and uniqueness theorem for IVPs for ODEs. It is a local existence theorem
because it only asserts the existence of a solution for sufficiently small times, not
necessarily for all times.

Theorem 1.7 (Existence-uniqueness). If f : Rd → Rd is locally Lipschitz
continuous, then there exists a unique solution x : I → Rd of (1.8) defined on some
time-interval I ⊂ R containing t = 0.

In practice, to apply this theorem to (1.8), we usually just have to check that
the right-hand side f(x) is a continuously differentiable function of the dependent
variables x.
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We will not prove Theorem 1.7 here, but we explain the main idea of the proof.
Since it is impossible, in general, to find an explicit solution of a nonlinear IVP
such as (1.8), we have to construct the solution by some kind of approximation
procedure. Using the method of Picard iteration, we rewrite (1.8) as an equivalent
integral equation

(1.9) x(t) = x0 +

∫ t

0

f (x(s)) ds.

This integral equation formulation includes both the initial condition and the ODE.
We then define a sequence xn(t) of functions by iteration, starting from the constant
initial data x0:

(1.10) xn+1(t) = x0 +

∫ t

0

f (xn(s)) ds, n = 1, 2, 3, . . . .

Using the Lipschitz continuity of f , one can show that this sequence converges
uniformly on a sufficiently small time interval I to a unique function x(t). Taking
the limit of (1.10) as n → ∞, we find that x(t) satisfies (1.9), so it is the solution
of (1.8).

Two simple scalar examples illustrate Theorem 1.7. The first example shows
that solutions of nonlinear IVPs need not exist for all times.

Example 1.8. Consider the IVP

xt = x2, x(0) = x0.

For x0 6= 0, we find by separating variables that the solution is

(1.11) x(t) = −
(

1

t− 1/x0

)
.

If x0 > 0, the solution exists only for −∞ < t < t0 where t0 = 1/x0, and x(t)→ −∞
as t → t0. Note that the larger the initial data x0 the smaller the ‘blow-up’ time
t0. If x0 < 0, then t0 < 0 and the solution exists for t0 < t < ∞. Only if x0 = 0
does the solution x(t) = 0 exists for all times t ∈ R.

One might consider using (1.11) past the time t0, but continuing a solution
through infinity does not make much sense in evolution problems. In applications,
the appearance of a singularity typically signifies that the assumptions of the math-
ematical model have broken down in some way.

The second example shows that solutions of (1.8) need not be unique if f is
not Lipschitz continuous.

Example 1.9. Consider the IVP

(1.12) xt = |x|1/2, x(0) = 0.

The right-hand side of the ODE, f(x) = |x|1/2, is not differentiable or Lipschitz
continuous at the initial data x = 0. One solution is x(t) = 0, but this is not the
only solution. Separating variables in the ODE, we get the solution

x(t) =
1

4
(t− t0)2.

Thus, for any t0 ≥ 0, the function

x(t) =

{
0 if t ≤ t0
(1/4)(t− t0)2 if t > t0
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is also a solution of the IVP (1.12). The parabolic solution can ‘take off’ spontan-
teously with zero derivative from the zero solution at any nonnegative time t0. In
applications, a lack of uniqueness typically means that something is missing from
the mathematical model.

If f(x) is only assumed to be a continuous function of x, then solutions of (1.8)
always exist (this is the Peano existence theorem) although they may fail to be
unique, as shown by Example 1.9. In future, we will assume that f is a smooth
function; typically, f will be C∞, meaning that is has continuous derivatives of all
orders. In that case, the issue of non-uniqueness does not arise.

Even for arbitrarily smooth functions f , the solution of the nonlinear IVP (1.8)
may fail to exist for all times if f(x) grows faster than a linear function of x, as
in Example 1.8. According to the following theorem, the only way in which global
existence can fail is if the solution ‘escapes’ to infinity. We refer to this phenomenon
informally as ‘blow-up.’

Theorem 1.10 (Extension). If f : Rd → Rd is locally Lipschitz continuous,
then the solution x : I → Rd of (1.8) exists on a maximal time-interval

I = (T−, T+) ⊂ R

where −∞ ≤ T− < 0 and 0 < T+ ≤ ∞. If T+ < ∞, then |x(t)| → ∞ as t ↑ T+,
and if T− > −∞, then |x(t)| → ∞ as t ↓ T−,

This theorem implies that we can continue a solution of the ODE so long as it
remains bounded.

Example 1.11. Consider the function defined for t 6= 0 by

x(t) = sin

(
1

t

)
.

This function cannot be extended to a differentiable, or even continuous, function
at t = 0 even though it is bounded. This kind of behavior cannot happen for
solutions of ODEs with continuous right-hand sides, because the ODE implies that
the derivative xt remains bounded if the solution x remains bounded. On the other
hand, an ODE may have a solution like x(t) = 1/t, since the derivative xt only
becomes large when x itself becomes large.

Example 1.12. Theorem 1.7 implies that the Lorenz system (1.1) with arbi-
trary initial conditions

x(0) = x0, y(0) = y0, z(0) = z0

has a unique solution defined on some time interval containing 0, since the right
hand side is a smooth (in fact, quadratic) function of (x, y, z). The theorem does
not imply, however, that the solution exists for all t.

Nevertheless, we claim that when the parameters (σ, r, β) are positive the so-
lution exists for all t ≥ 0. From Theorem 1.10, this conclusion follows if we can
show that the solution remains bounded, and to do this we introduce a suitable
Lyapunov function. A convenient choice is

V (x, y, z) = rx2 + σy2 + σ(z − 2r)2.
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Using the chain rule, we find that if (x, y, z) satisfies (1.2), then

d

dt
V (x, y, z) = 2rxxt + 2σyyt + 2σ(z − 2r)zt

= 2rσx(y − x) + 2σy(rx− y − xz) + 2σ(z − 2r)(xy − βz)
= −2σ

[
rx2 + y2 + β(z − r)2

]
+ 2βσr2.

Hence, if W (x, y, z) > βr2, where

W (x, y, z) = rx2 + y2 + β(z − r)2,

then V (x, y, z) is decreasing in time. This means that if C is sufficiently large that
the ellipsoid V (x, y, z) < C contains the ellipsoid W (x, y, z) ≤ βr2, then solutions
cannot escape from the region V (x, y, z) < C forward in time, since they move
‘inwards’ across the boundary V (x, y, z) = C. Therefore, the solution remains
bounded and exists for all t ≥ 0.

Note that this argument does not preclude the possibility that solutions of (1.2)
blow up backwards in time. The Lorenz system models a forced, dissipative system
and its dynamics are not time-reversible. (This contrasts with the dynamics of
conservative, Hamiltonian systems, which are time-reversible.)

1.3. Linear systems of ODEs

An IVP for a (homogeneous, autonomous, first-order) linear system of ODEs
for x(t) ∈ Rd has the form

xt = Ax,

x(0) = x0
(1.13)

where A is a d × d matrix and x0 ∈ Rd. This system corresponds to (1.8) with
f(x) = Ax. Linear systems are much simpler to study than nonlinear systems, and
perhaps the first question to ask of any equation is whether it is linear or nonlinear.

The linear IVP (1.13) has a unique global solution, which is given explicitly by

x(t) = etAx0, −∞ < t <∞

where

etA = I + tA+
1

2
t2A2 + · · ·+ 1

n!
tnAn + . . .

is the matrix exponential.
If A is nonsingular, then (1.13) has a unique equilibrium solution x = 0. This

equilibrium is stable if all eigenvalues of A have negative real parts and unstable
if some eigenvalue of A has positive real part. If A is singular, then there is a
ν-dimensional subspace of equilibria where ν is the nullity of A.

Linear systems are important in their own right, but they also arise as approx-
imations of nonlinear systems. Suppose that x̄ is an equilibrium solution of (1.1),
satisfying (1.3). Then writing

x(t) = x̄+ y(t)

and Taylor expanding f(x) about x̄, we get

f(x̄+ y) = Ay + . . .
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where A is the derivative of f evaluated at x̄, with matrix (aij):

A = Df(x̄), aij =
∂fi
∂xj

(x̄).

The linearized approximation of (1.1) at the equilibrium x̄ is then

yt = Ay.

An important question is if this linearized system provides a good local approxi-
mation of the nonlinear system for solutions that are near equilibrium. This is the
case under the following condition.

Definition 1.13. An equilibrium x̄ of (1.1) is hyperbolic if Df(x̄) has no
eigenvalues with zero real part.

Thus, for a hyperbolic equilibrium, all solutions of the linearized system grow
or decay exponentially in time. According to the Hartman-Grobman theorem, if x̄
is hyperbolic, then the flows of the linearized and nonlinear system are (topologi-
cally) equivalent near the equilibrium. In particular, the stability of the nonlinear
equilibrium is the same as the stability of the equilibrium of the linearized system.
One has to be careful, however, in drawing conclusions about the behavior of the
nonlinear system from the linearized system if Df(x̄) has eigenvalues with zero real
part. In that case the nonlinear terms may cause the growth or decay of perturba-
tions from equilibrium, and the behavior of solutions of the nonlinear system near
the equilibrium may differ qualitatively from that of the linearized system.

Non-hyperbolic equilibria are not typical for specific systems, since one does
not expect the eigenvalues of a given matrix to have a real part that is exactly
equal to zero. Nevertheless, non-hyperbolic equilibria arise in an essential way in
bifurcation theory when an eigenvalue of a system that depends on some parameter
has real part that passes through zero.

1.4. Phase space

it may happen that small
differences in the initial conditions
produce very great ones in the final
phenomena

Henri Poincaré, 1908

Very few nonlinear systems of ODEs are explicitly solvable. Therefore, rather
than looking for individual analytical solutions, we try to understand the qualitative
behavior of their solutions. This global, geometrical approach was introduced by
Poincaré (1880).

We may represent solutions of (1.8) by solution curves, trajectories, or orbits,
x(t) in phase, or state, space Rd. These trajectories are integral curves of the
vector field f , meaning that they are tangent to f at every point. The existence-
uniqueness theorem implies if the vector field f is smooth, then a unique trajectory
passes through each point of phase space and that trajectories cannot cross. We
may visualize f as the steady velocity field of a fluid that occupies phase space and
the trajectories as particle paths of the fluid.
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Let x(t;x0) denote the solution of (1.8), defined on its maximal time-interval
of existence T−(x0) < t < T+(x0). The existence-uniqueness theorem implies that
we can define a flow map, or solution map, Φt : Rd → Rd by

Φt(x0) = x(t;x0), T−(x0) < t < T+(x0).

That is, Φt maps the initial data x0 to the solution at time t. Note that Φt(x0) is
not defined for all t ∈ R, x0 ∈ Rd unless all solutions exist globally. In the fluid
analogy, Φt may be interpreted as the map that takes a particle from its initial
location at time 0 to its location at time t.

The flow map Φt of an autonomous system has the group property that

Φt ◦ Φs = Φt+s

where ◦ denotes the composition of maps i.e. solving the ODE for time t + s is
equivalent to solving it for time s then for time t. We remark that the solution map
of a non-autonomous IVP,

xt = f(x, t), x(t0) = x0

with solution x(t;x0, t0), is defined by

Φt,t0(x0) = x(t;x0, t0).

The map depends on both the initial and final time, not just their difference, and
satisfies

Φt,s ◦ Φs,r = Φt,r.

If x̄ is an equilibrium solution of (1.8), with f(x̄) = 0, then

Φt(x̄) = x̄,

which explains why equilibria are referred to as fixed points (of the flow map).
We may state a precise definition of stability in terms of the flow map. There are
many different, and not entirely equivalent definitions, of stability; we give only the
simplest and most commonly used ones.

Definition 1.14. An equilibrium x̄ of (1.8) is Lyapunov stable (or stable, for
short) if for every ε > 0 there exists δ > 0 such that if |x− x̄| < δ then

|Φt(x)− x̄| for all t ≥ 0.

The equilibrium is asymptotically stable if it is Lyapunov stable and there exists
η > 0 such that if |x− x̄| < η then

Φt(x)→ x̄ as t→∞.

Thus, stability means that solutions which start sufficiently close to the equi-
librium remain arbitrarily close for all t ≥ 0, while asymptotic stability means that
in addition nearby solutions approach the equilibrium as t→∞. Lyapunov stabil-
ity does not imply asymptotic stability since, for example, nearby solutions might
oscillate about an equilibrium without decaying toward it. Also, it is not sufficient
for asymptotic stability that all nearby solutions approach the equilibrium, because
they could make large excursions before approaching the equilibrium, which would
violate Lyapunov stability.

The next result implies that the solution of an IVP depends continuously on
the initial data, and that the flow map of a smooth vector field is smooth. Here,
‘smooth’ means, for example, C1 or C∞.
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Theorem 1.15 (Continuous dependence on initial data). If the vector field f in
(1.8) is locally Lipschitz continuous, then the corresponding flow map Φt : Rd → Rd

is locally Lipschitz continuous. Moreover, the existence times T+ (respectively, T−)
are lower (respectively, upper) semi-continuous function of x0. If the vector field f
in (1.8) is smooth, then the corresponding flow map Φt : Rd → Rd is smooth.

Here, the lower-semicontinuity of T+ means that

T+(x0) ≤ lim inf
x→x0

T+(x),

so that solutions with initial data near x0 exist for essentially as long, or perhaps
longer, than the solution with initial data x0.

Theorem 1.15 means that solutions remain close over a finite time-interval if
their initial data are sufficiently close. After long enough times, however, two
solutions may diverge by an arbitrarily large amount however close their initial
data.

Example 1.16. Consider the scalar, linear ODE xt = x. The solutions x(t),
y(t) with initial data x(0) = x0, y(0) = y0 are given by

x(t) = x0e
t, y(t) = y0e

t.

Suppose that [0, T ] is any given time interval, where T > 0. If |x0 − y0| ≤ εe−T ,
then the solutions satisfy |x(t)− y(t)| ≤ ε for all 0 ≤ t ≤ T , so the solutions remain
close on [0, T ], but |x(t)− y(t)| → ∞ as t→∞ whenever x0 6= y0.

Not only do the trajectories depend continuously on the initial data, but if f
is Lipschitz continuous they can diverge at most exponentially quickly in time. If
M is the Lipschitz constant of f and x(t), y(t) are two solutions of (1.8), then

d

dt
|x− y| ≤M |x− y|.

It follows from Gronwall’s inequality that if x(0) = x0, y(0) = y0, then

|x(t)− y(t)| ≤ |x0 − y0|eMt.

The local exponential divergence (or contraction) of trajectories may be different
in different directions, and is measured by the Lyapunov exponents of the system.
The largest such exponent is called the Lyapunov exponent of the system. Chaotic
behavior occurs in systems with a positive Lyapunov exponent and trajectories that
remain bounded; it is associated with the local exponential divergence of trajectories
(essentially a linear phenomenon) followed by a global folding (typically as a result
of nonlinearity).

One way to organize the study of dynamical systems is by the dimension of
their phase space (following the Trolls of Discworld: one, two, three, many, and
lots). In one or two dimensions, the non-intersection of trajectories strongly re-
stricts their possible behavior: in one dimension, solutions can only increase or
decrease monotonically to an equilibrium or to infinity; in two dimensions, oscilla-
tory behavior can occur. In three or more dimensions complex behavior, including
chaos, is possible.

For the most part, we will consider dynamical systems with low-dimensional
phase spaces (say of dimension d ≤ 3). The analysis of high-dimensional dynam-
ical systems is usually very difficult, and may require (more or less well-founded)
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probabilistic assumptions, or continuum approximations, or some other type of
approach.

Example 1.17. Consider a gas composed of N classical particles of mass m
moving in three space dimensions with an interaction potential V : R3 → R. We
denote the positions of the particles by x = (x1, x2, . . . , xN ) and the momenta by
p = (p1, p2, . . . , pN ), where xi, pi ∈ R3. The Hamiltonian for this system is

H(x, p) =
1

2m

N∑
i=1

p2i +
1

2

∑
1≤i 6=j≤N

V (xi − xj) ,

and Hamilton’s equations are

dxi
dt

=
1

m
pi,

dpi
dt

= −
∑
j 6=i

∂V

∂x
(xi − xj) .

The phase space of this system has dimension 6N . For a mole of gas, we have
N = NA where NA ≈ 6.02 × 1023 is Avogadro’s number, and this dimension is
extremely large.

In kinetic theory, one considers equations for probability distributions of the
particle locations and velocities, such as the Boltzmann equation. One can also ap-
proximate some solutions by partial differential fluid equations, such as the Navier-
Stokes equations, for suitable averages.

We will mostly consider systems whose phase space is Rd. More generally, the
phase space of a dynamical system may be a manifold. We will not give the precise
definition of a manifold here; roughly speaking, a d-dimensional manifold is a space
that ‘looks’ locally like Rd, with a d-dimensional local coordinate system about
each point, but which may have a different global, topological structure. The d-
dimensional sphere Sd is a typical example. Phase spaces that are manifolds arise,
for example, if some of the state variables represent angles.

Example 1.18. The motion of an undamped pendulum of length ` in a gravi-
tational field with acceleration g satisfies the pendulum equation

θtt +
g

`
sin θ = 0

where θ ∈ T is the angle of the pendulum to the vertical, measured in radians.
Here, T = R/(2πZ) denotes the circle; angles that differ by an integer multiple of
2π are equivalent. Writing the pendulum equation as a first-order system for (θ, v)
where v = θt ∈ R is the angular velocity, we get

θt = v, vt = −g
`

sin θ

The phase space of this system is the cylinder T × R. This phase space may be
‘unrolled’ into R2 with points on the θ-axis identified modulo 2π, but it is often
conceptually clearer to keep the actual cylindrical structure and θ-periodicity in
mind.

Example 1.19. The phase space of a rotating rigid body, such as a tumbling
satellite, may be identified with the group SO(3) of rotations about its center of
mass from some fixed reference configuration. The three Euler angles of a rotation
give one possible local coordinate system on the phase space.
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Solutions of an ODE with a smooth vector field on a compact phase space
without boundaries, such as Sd, exist globally in time since they cannot escape to
infinity (or hit a boundary).

1.5. Bifurcation theory

Most applications lead to equations which depend on parameters that charac-
terize properties of the system being modeled. We write an IVP for a first-order
system of ODEs for x(t) ∈ Rd depending on a vector of parameters µ ∈ Rm as

xt = f(x;µ),

x(0) = x0
(1.14)

where f : Rd × Rm → Rd.
In applications, it is important to determine a minimal set of dimensionless

parameters on which the problem depends and to know what parameter regimes
are relevant e.g. if some dimensionless parameters are very large or small.

Example 1.20. The Lorentz system (1.2) for (x, y, z) ∈ R3 depends on three
parameters (σ, r, β) ∈ R3, which we assume to be positive. We typically think of
fixing (σ, β) and increasing r, which in the original convection problem corresponds
to fixing the fluid properties and the dimensions of the fluid layer and increasing
the temperature difference across it.

If the vector field in (1.14) depends smoothly (e.g. C1 or C∞) on the parameter
µ, then so does the flow map. Explicitly, if x(t;x0;µ) denotes the solution of (1.14),
then we define the flow map Φt by

Φt(x0;µ) = x(t;x0;µ).

Theorem 1.21 (Continuous dependence on parameters). If the vector field
f : Rd × Rm → Rd in (1.14) is smooth, then the corresponding flow map Φt :
Rd × Rm → Rd is smooth.

Bifurcation theory is concerned with changes in the qualitative behavior of the
solutions of (1.14) as the parameter µ is varied. It may be difficult to carry out a full
bifurcation analysis of a nonlinear dynamical system, especially when it depends
on many parameters.

The simplest type of bifurcation is the bifurcation of equilbria. The equilibrium
solutions of (1.14) satisfy

f(x̄;µ) = 0,

so an analysis of equilibrium bifurcations corresponds to understanding how the
solutions x̄(µ) ∈ Rd of this d × d system of nonlinear, algebraic equations depend
upon the parameter µ. We refer to a smooth solution x̄ : I → Rd in a maximal
domain I as a solution branch or a branch of equilibria.

There is a closely related dynamical aspect concerning how the stability of the
equilibria change as the parameter µ varies. If x̄(µ) is a branch of equilibrium
solutions, then the linearization of the system about x̄ is

xt = A(µ)x, A(µ) = Dxf (x̄(µ);µ) .

Equilibria lose stability if some eigenvalue λ(µ) of A crosses from the left-half of
the complex plane into the right-half plane as µ varies. By the implicit function
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theorem, equilibrium bifurcations are necessarily associated with a real eigenvalue
passing through zero, so that A is singular at the bifurcation point.

Equilibrium bifurcations are not the only kind, and the dynamic behavior of
a system may change without a change in the equilibrium solutions For example,
time-periodic solutions may appear or disappear in a Hopf bifurcation, which occurs
where a complex-conjugate pair of complex eigenvalues of A crosses into the right-
half plane, or there may be global changes in the geometry of the trajectories in
phase space, as in a homoclinic bifurcation.

1.6. Discrete dynamical systems

Not only in research, but also in
the everyday world of politics and
economics, we would all be better
off if more people realised that
simple nonlinear systems do not
necessarily possess simple
dynamical properties

Robert May, 1976

A (first-order, autonomous) discrete dynamical system for xn ∈ Rd has the
form

(1.15) xn+1 = f(xn)

where f : Rd → Rd and n ∈ Z is a discrete time variable.
The orbits, or trajectories of (1.15) consist of a sequence of points {xn} that is

obtained by iterating the map f . (They are not curves like the orbits of a continuous
dynamical system.) If fn = f ◦ f ◦ · · · ◦ f denotes the n-fold composition of f , then

xn = fn(x0).

If f is invertible, these orbits exists forward and backward in time (n ∈ Z), while if f
is not invertible, they exist in general only forward in time (n ∈ N). An equilibrium
solution x̄ of (1.15) is a fixed point of f that satisfies

f(x̄) = x̄,

and in that case xn = x̄ for all n.
A linear discrete dynamical system has the form

(1.16) xn+1 = Bxn,

where B is a linear transformation on Rd. The solution is

xn = Bnx0.

The linear system (1.16) has the unique fixed point x̄ = 0 if I −B is a nonsingular
linear map. This fixed point is asymptotically stable if all eigenvalues λ ∈ C of B
lie in the unit disc, meaning that |λ| < 1. It is unstable if B has some eigenvalue
with |λ| > 1 in the exterior of the unit disc.

The linearization of (1.15) about a fixed point x̄ is

xn+1 = Bxn, B = Df(x̄).
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Analogously to the case of continuous systems, we can determine the stability of the
fixed point from the stability of the linearized system under a suitable hyperbolicity
assumption.

Definition 1.22. A fixed point x̄ of (1.15) is hyperbolic if Df(x̄) has no
eigenvalues with absolute value equal to one.

If x̄ is a hyperbolic fixed point of (1.15), then it is asymptotically stable if all
eigenvalues of Df(x̄) lie inside the unit disc, and unstable if some eigenvalue lies
outside the unit disc.

The behavior of even one-dimensional discrete dynamical systems may be com-
plicated. The biologist May (1976) drew attention to the fact that the logistic
map,

xn+1 = µxn (1− xn) ,

leads to a discrete dynamical system with remarkably intricate behavior, even
though the corresponding continuous logistic ODE

xt = µx(1− x)

is simple to analyze completely. Another well-known illustration of the complexity
of discrete dynamical systems is the fractal structure of Julia sets for complex dy-
namical systems (with two real dimensions) obtained by iterating rational functions
f : C→ C.

Discrete dynamical systems may arise directly as models e.g. in population
ecology, xn might represent the population of the nth generation of species. They
also arise from continuous dynamical systems.

Example 1.23. If Φt is the flow map of a continuous dynamical system with
globally defined solutions, then the time-one map Φ1 defines an invertible discrete
dynamical system. The dimension of the discrete system is the same as the dimen-
sion of the continuous one.

Example 1.24. The time-one map of a linear system of ODEs xt = Ax is

B = eA.

Eigenvalues of A in the left-half of the complex plane, with negative real part, map
to eigenvalues of B inside the unit disc, and eigenvalues of A is the right-half-plane
maps to eigenvalues of B outside the unit disc. Thus, the stability properties of the
fixed point x̄ = 0 in the continuous and discrete descriptions are consistent.

Example 1.25. Consider a non-autonomous system for x ∈ Rd that depends
periodically on time,

xt = f(x, t), f(x, t+ 1) = f(x, t).

We define the corresponding Poincaré map Φ : Rd → Rd by

Φ : x(0) 7→ x(1).

Then Φ defines an autonomous discrete dynamical system of dimension d, which
is one less than the dimension d + 1 of the original system when it is written in
autonomous form. This reduction in dimension makes the dynamics of the Poincaré
map easier to visualize than that the original flow, especially when d = 2. Moreover,
by continuous dependence, trajectories of the original system remain arbitrarily
close over the entire time-interval 0 ≤ t ≤ 1 if their initial conditions are sufficient
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close, so replacing the full flow map by the Poincaré map does not lead to any
essential loss of qualitative information.

Fixed points of the Poincaré map correspond to periodic solutions of the original
system, although their minimal period need not be one; for example any solution
of the original system with period 1/n where n ∈ N is a fixed point of the Poincaré
map, as is any equilibrium solution with f(x̄, t) = 0.

Example 1.26. Consider the forced, damped pendulum with non-dimensionalized
equation

xtt + δxt + sinx = γ cosωt

where γ, δ, and ω are parameters, measuring the strength of the damping, the
strength of the forcing, and the (angular) frequency of the forcing, respectively. Or
a parametrically forced oscillator (such as a swing)

xtt + (1 + γ cosωt) sinx = 0.

Here, the Poincaré map Φ : T× R→ T× R is defined by

Φ : (x(0), xt(0)) 7→ (x(T ), xt(T )) , T =
2π

ω
.

Floquet theory is concerned with such time-periodic ODEs, including the stability
of their time-periodic solutions, which is equivalent to the stability of fixed points
of the Poincaré map.

1.7. References
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