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CHAPTER 2

One Dimensional Dynamical Systems

We begin by analyzing some dynamical systems with one-dimensional phase
spaces, and in particular their bifurcations. All equations in this Chapter are scalar
equations. We mainly consider continuous dynamical systems on the real line R,
but we also consider continuous systems on the circle T, as well as some discrete
systems.

The restriction to one-dimensional systems is not as severe as it may sound.
One-dimensional systems may provide a full model of some systems, but they also
arise from higher-dimensional (even infinite-dimensional) systems in circumstances
where only one degree of freedom determines their dynamics. Haken used the term
‘slaving’ to describe how the dynamics of one set of modes may follow the dynamics
of some other, smaller, set of modes, in which case the behavior of the smaller set
of modes determines the essential dynamics of the full system. For example, one-
dimensional equations for the bifurcation of equilibria at a simple eigenvalue may
be derived by means of the Lyapunov-Schmidt reduction.

2.1. Exponential growth and decay

I said that population, when
unchecked, increased in a
geometrical ratio; and subsistence
for man in an arithmetical ratio.

Thomas Malthus, 1798

The simplest ODE is the linear scalar equation

(2.1) xt = µx.

Its solution with initial condition x(0) = x0 is

x(t) = x0e
µt

where the parameter µ is a constant. If µ > 0, (2.1) describes exponential growth,
and we refer to µ as the growth constant. The solution increases by a factor of e
over time Te = 1/µ, and has doubling time

T =
log 2

µ
.

If µ = −λ < 0, then (2.1) describes exponential decay, and we refer to λ = |µ| as
the decay constant. The solution decreases by a factor of e over time Te = 1/λ,
and has half-life

T =
log 2

λ
.
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18 2. ONE DIMENSIONAL DYNAMICAL SYSTEMS

Note that µ or λ have the dimension of inverse time, as follows from equating the
dimensions of the left and right hand sides of (2.1). The dimension of x is irrelevant
since both sides are linear in x.

Example 2.1. Malthus (1798) contrasted the potential exponential growth of
the human population with the algebraic growth of resources needed to sustain it.
An exponential growth law is too simplistic to accurately describe human popula-
tions. Nevertheless, after an initial lag period and before the limitation of nutrients,
space, or other resources slows the growth, the population x(t) of bacteria grown
in a laboratory is well-described this law. The population doubles over the cell-
division time. For example, E. Coli grown in glucose has a cell-division time of
approximately 17 mins, corresponding to µ ≈ 0.04 mins−1.

Example 2.2. Radioactive decay is well-described by (2.1) with µ < 0, where
x(t) is the molar amount of radioactive isotope remaining after time t. For ex-
ample, C14 used in radioactive dating has a half-life of approximately 5730 years,
corresponding to µ ≈ −1.2× 10−4 years−1.

If x0 ≥ 0, then x(t) ≥ 0 for all t ∈ R, so this equation is consistent with
modeling problems such as population growth or radioactive decay where the solu-
tion should remain non-negative. We assume also that the population or number
of radioactive atoms is sufficiently large that we can describe it by a continuous
variable.

The phase line of (2.1) consists of a globally asymptotically stable equilibrium
x = 0 if µ < 0, and an unstable equilibrium x = 0 if µ > 0. If µ = 0, then every
point on the phase line is an equilibrium.

2.2. The logistic equation

The simplest model of population growth of a biological species that takes
account of the effect of limited resources is the logistic equation

(2.2) xt = µx
(

1− x

K

)
.

Here, x(t) is the population at time t, the constant K > 0 is called the carrying
capacity of the system, and µ > 0 is the maximum growth rate, which occurs at
populations that are much smaller than the carrying capacity. For 0 < x < K, the
population increases, while for x > K, the population decreases.

We can remove the parameters µ, K by introducing dimensionless variables

t̃ = µt, x̃(t̃) =
x(t)

K
.

Since µ > 0, this transformation preserves the time-direction. The non-dimensionalized
equation is x̃t̃ = x̃ (1− x̃) or, on dropping the tildes,

xt = x(1− x).

The solution of this ODE with initial condition x(0) = x0 is

x(t) =
x0e

t

1− x0 + x0et
.

The phase line consists of an unstable equilibrium at x = 0 and a stable equilibrium
at x = 1. For any initial data with x0 > 0, the solution satisfies x(t)→ 1 as t→∞,
meaning that the population approaches the carrying capacity.
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2.3. The phase line

Consider a scalar ODE

(2.3) xt = f(x)

where f : R→ R is a smooth function.
To sketch the phase line of this system one just has to examine the sign of f .

Points where f(x) = 0 are equilibria. In intervals where f(x) > 0, solutions are
increasing, and trajectories move to the right. In intervals where f(x) < 0, solutions
are decreasing and trajectories move to the left. This gives a complete picture of
the dynamics, consisting monotonically increasing or decreasing trajectories that
approach equilibria, or go off to infinity.

The linearization of (2.3) at an equilibrium x̄ is

xt = ax, a = f ′(x̄).

The equilibrium is asymptotically unstable if f ′(x̄) < 0 and unstable if f ′(x̄) > 0.
If f ′(x̄) = 0, meaning that the fixed point is not hyperbolic, there is no immediate
conclusion about the stability of x̄, although one can determine its stability by
looking at the behavior of the sign of f near the equilibrium.

Example 2.3. The ODE

xt = x2

with f(x) = x2 has the unique equilibrium x = 0, but f ′(0) = 0. Solutions with
x(0) < 0 approach the equilibrium as t → ∞, while solutions with x(0) > 0 leave
it (and go off to ∞ in finite time). Such a equilibrium with one-sided stability is
sometimes said to be semi-stable.

Example 2.4. For the ODE xt = −x3, the equilibrium x = 0 is asymptotically
stable, while for xt = x3 it is unstable, even though f ′(0) = 0 in both cases. Note,
however, that perturbations from the equilibrium grow or decay algebraically in
time, not exponentially as in the case of a hyperbolic equilibrium.

2.4. Bifurcation theory

And thirdly, the code is more what
you’d call “guidelines” than actual
rules.

Barbossa

Like the pirate code, the notion of a bifurcation is more of a guideline than an
actual rule. In general, it refers to a qualitative change in the behavior of a dynam-
ical system as some parameter on which the system depends varies continuously.

Consider a scalar ODE

(2.4) xt = f(x;µ)

depending on a single parameter µ ∈ R where f is a smooth function. The qual-
itative dynamical behavior of a one-dimensional continuous dynamical system is
determined by its equilibria and their stability, so all bifurcations are associated
with bifurcations of equilibria. One possible definition (which does not refer di-
rectly to the stability of the equilibria) is as follows.
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Definition 2.5. A point (x0, µ0) is a bifurcation point of equilibria for (2.4)
if the number of solutions of the equation f(x;µ) = 0 for x in every neighborhood
of (x0, µ0) is not a constant independent of µ.

The three most important one-dimensional equilibrium bifurcations are de-
scribed locally by the following ODEs:

xt = µ− x2, saddle-node;

xt = µx− x2, transcritical;

xt = µx− x3, pitchfork.

(2.5)

We will study each of these in more detail below.

2.5. Saddle-node bifurcation

Consider the ODE

(2.6) xt = µ+ x2.

Equations xt = ±µ ± x2 with other choices of signs can be transformed into (2.6)
by a suitable change in the signs of x and µ, although the transformation µ 7→ −µ
changes increasing µ to decreasing µ.

The ODE (2.6)

x = ±
√
−µ

has two equilibria if µ < 0, one equilibrium x = 0 if µ = 0, and no equilibria if
µ > 0. For the function f(x;µ) = µ+ x2, we have

∂f

∂x
(±
√
−µ;µ) = ±2

√
−µ.

Thus, if µ < 0, the equilibrium
√
−µ is unstable and the equilibrium −

√
−µ is

stable. If µ = 0, then the ODE is xt = x2, and x = 0 is a non-hyperbolic, semi-
stable equilibrium.

This bifurcation is called a saddle-node bifurcation. In it, a pair of hyperbolic
equilibria, one stable and one unstable, coalesce at the bifurcation point, annihilate
each other and disappear.1 We refer to this bifurcation as a subcritical saddle-node
bifurcation, since the equilibria exist for values of µ below the bifurcation value
0. With the opposite sign xt = µ − x2, the equilibria appear at the bifurcation
point (x, µ) = (0, 0) as µ increases through zero, and we get a supercritical saddle-
node bifurcation. Saddle-node bifurcations are the generic way that the number of
equilibrium solutions of a dynamical system changes as some parameter is varied.

The name “saddle-node” comes from the corresponding two-dimensional bi-
furcation in the phase plane, in which a saddle point and a node coalesce and
disappear, but the other dimension plays no essential role in that case and this
bifurcation is one-dimensional in nature.

1If we were to allow complex equilibria, the equilibria would remain but become imaginary.
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2.6. Transcritical bifurcation

Consider the ODE

xt = µx− x2.
This has two equilibria at x = 0 and x = µ. For f(x;µ) = µx− x2, we have

∂f

∂x
(x;µ) = µ− 2x,

∂f

∂x
(0;µ) = µ,

∂f

∂x
(µ;µ) = −µ.

Thus, the equilibrium x = 0 is stable for µ < 0 and unstable for µ > 0, while the
equilibrium x = µ is unstable for µ < 0 and stable for µ > 0. Note that although
x = 0 is asymptotically stable for µ < 0, it is not globally stable: it is unstable to
negative perturbations of magnitude greater than µ, which can be small near the
bifurcation point.

This transcritical bifurcation arises in systems where there is some basic “triv-
ial” solution branch, corresponding here to x = 0, that exists for all values of the
parameter µ. (This differs from the case of a saddle-node bifurcation, where the
solution branches exist locally on only one side of the bifurcation point.). There is
a second solution branch x = µ that crosses the first one at the bifurcation point
(x, µ) = (0, 0). When the branches cross one solution goes from stable to unstable
while the other goes from stable to unstable. This phenomenon is referred to as an
“exchange of stability.”

2.7. Pitchfork bifurcation

Consider the ODE

xt = µx− x3.
Note that this ODE is invariant under the reflectional symmetry x 7→ −x. It
often describes systems with this kind of symmetry e.g. systems where there is no
distinction between left and right.

The system has one globally asymptotically stable equilibrium x = 0 if µ ≤ 0,
and three equilibria x = 0, x = ±√µ if µ is positive. The equilibria ±√µ are stable
and the equilibrium x = 0 is unstable for µ > 0. Thus the stable equilibrium 0
loses stability at the bifurcation point, and two new stable equilibria appear. The
resulting pitchfork-shape bifurcation diagram gives this bifurcation its name.

This pitchfork bifurcation, in which a stable solution branch bifurcates into
two new stable branches as the parameter µ is increased, is called a supercritical
bifurcation. Because the ODE is symmetric under x 7→ −x, we cannot normalize
all the signs in the ODE without changing the sign of t, which reverses the stability
of equilibria.

Up to changes in the signs of x and µ, the other distinct possibility is the
subcritical pitchfork bifurcation, described by

xt = µx+ x3.

In this case, we have three equilibria x = 0 (stable), x = ±
√
−µ (unstable) for

µ < 0, and one unstable equilibrium x = 0 for µ > 0.
A supercritical pitchfork bifurcation leads to a “soft” loss of stability, in which

the system can go to nearby stable equilibria x = ±√µ when the equilibrium x = 0
loses stability as µ passes through zero. On the other hand, a subcritical pitchfork
bifurcation leads to a “hard” lose of stability, in which there are no nearby equilibria
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and the system goes to some far-off dynamics (or perhaps to infinity) when the
equilibrium x = 0 loses stability.

Example 2.6. The ODE

xt = µx+ x3 − x5

has a subcritical pitchfork bifurcation at (x, µ) = (0, 0). When the solution x = 0
loses stability as µ passes through zero, the system can jump to one of the distant
stable equilibria with

x2 =
1

2

(
1 +

√
1 + 4µ

)
,

corresponding to x = ±1 at µ = 0.

2.8. The implicit function theorem

The above bifurcation equations for equilibria arise as normal forms from more
general bifurcation equations, and they may be derived by a suitable Taylor expan-
sion.

Consider equilibrium solutions of (2.4) that satisfy

(2.7) f(x;µ) = 0

where f : R × R → R is a smooth function. Suppose that x0 is an equilibrium
solution at µ0, meaning that

f(x0;µ0) = 0.

Let us look for equilibria that are close to x0 when µ is close to µ0. Writing

x = x0 + x1 + . . . , µ = µ0 + µ1

where x1, µ1 are small, and Taylor expanding (2.7) up to linear terms, we get that

∂f

∂x
(x0;µ0)x1 +

∂f

∂µ
(x0;µ0)µ1 + · · · = 0

where the dots denote higher-order terms (e.g. quadratic terms). Hence, if

∂f

∂x
(x0;µ0) 6= 0

we expect to be able to solve (2.7) uniquely for x when (x, µ) is sufficiently close to
(x0, µ0), with

(2.8) x1 = cµ1 + . . . , c = −
[
∂f/∂µ(x0;µ0)

∂f/∂x(x0;µ0)

]
.

This is in fact true, as stated in the following fundamental result, which is the scalar
version of the implicit function theorem.

Theorem 2.7. Suppose that f : R× R→ R is a C1-function and

f(x0;µ0) = 0,
∂f

∂x
(x0;µ0) 6= 0.

Then there exist δ, ε > 0 and a C1 function

x̄ : (µ0 − ε, µ0 + ε)→ R
such that x = x̄(µ) is the unique solution of

f(x;µ) = 0

with |x− x0| < δ and |µ− µ0| < ε.
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By differentiating this equation

f(x̄(µ);µ) = 0

with respect to µ, setting µ = µ0, and solving for dx̄/dµ, we get that

dx̄

dµ
(µ0) = − ∂f/∂µ

∂f/∂x

∣∣∣∣
x=x0,µ=µ0

in agreement with (2.8).
For the purposes of bifurcation theory, the most important conclusion from the

implicit function theorem is the following:

Corollary 2.8. If f : R×R→ R is a C1-function, then a necessary condition
for a solution (x0, µ0) of (2.7) to be a bifurcation point of equilibria is that

(2.9)
∂f

∂x
(x0;µ0) = 0.

Another way to state this result is that hyperbolic equilibria are stable under
small variations of the system, and a local bifurcation of equilibria can occur only
at a non-hyperbolic equilibrium.

While an equilibrium bifurcation is typical at points where (2.9) holds, there
are exceptional, degenerate cases in which no bifurcation occurs. Thus, on its own,
(2.9) is a necessary but not sufficient condition for the bifurcation of equilibria.

Example 2.9. The ODE

xt = µ− x3

with f(x;µ) = µ− x3 has a unique branch x = (µ)1/3 of globally stable equilibria.
No bifurcation of equilibria occurs at (0, 0) even though

∂f

∂x
(0; 0) = 0.

Note, however, that the equilibrium branch is not a C1-function of µ at µ = 0.

Example 2.10. The ODE

xt = (µ− x)2

with f(x;µ) = (x−µ)2 has a unique branch x = µ of non-hyperbolic equilibria, all
of which are semi-stable. There are no equilibrium bifurcations, but

∂f

∂x
(µ;µ) = 0

for all values of µ.

There is a close connection between the loss of stability of equilibria of (2.4)
and their bifurcation. If x = x̄(µ) is a branch of equilibria, then the equilibria are
stable if

∂f

∂x
(x̄(µ);µ) < 0

and unstable if
∂f

∂x
(x̄(µ);µ) > 0.

It follows that if the equilibria lose stability at µ = µ0, then ∂f/∂x(x̄(µ);µ) changes
sign at µ = µ0 so (2.9) holds at that point. Thus, the loss of stability of a branch of
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equilibria due to the passage of an eigenvalue of the linearized system through zero
is typically associated with the appearance or disappearance of other equilibria.2

When (2.9) holds, we have to look at the higher-order terms in the Taylor
expansion of f(x;µ) to determine what type of bifurcation (if any) actually occurs.
We can always transfer a bifurcation point at (x0, µ0) to (0, 0) by the change of
variables x 7→ x− x0, µ 7→ µ−µ0. Moreover, if x = x̄(µ) is a solution branch, then
x 7→ x− x̄(µ) maps the branch to x = 0.

Let us illustrate the idea with the simplest example of a saddle-node bifurcation.
Suppose that

f(0, 0) = 0,
∂f

∂x
(0, 0) = 0

so that (0, 0) is a possible bifurcation point. Further suppose that

∂f

∂µ
(0; 0) = a 6= 0,

∂2f

∂2x
(0; 0) = b 6= 0.

Then Taylor expanding f(x;µ) up to the leading-order nonzero terms in x, µ we
get that

f(x;µ) = aµ+
1

2
bx2 + . . .

Thus, neglecting the higher-order terms,3 we may approximate the ODE (2.4) near
the origin by

xt = aµ+
1

2
bx2.

By rescaling x and µ, we may put this ODE in the standard normal form for a
saddle-node bifurcation. The signs of a and b determine whether the bifurcation is
subcritical or supercritical and which branches are stable or unstable. For example,
if a, b > 0, we get the same bifurcation diagram and local dynamics as for (2.6).

As in the case of the implicit function theorem, this formal argument does
not provide a rigorous proof that a saddle-node bifurcation occurs, and one has to
justify the neglect of the higher-order terms. In particular, it may not be obvious
which terms can be safely neglected and which terms must be retained. We will
not give any further details here, but simply summarize the resulting conclusions
in the following theorem.

Theorem 2.11. Suppose that f : R×R→ R is a smooth function and (x0, µ0)
satisfy the necessary bifurcation conditions

f(x0, µ0) = 0,
∂f

∂x
(x0;µ0) = 0.

• If
∂f

∂µ
(x0;µ0) 6= 0,

∂2f

∂2x
(x0;µ0) 6= 0

then a saddle-node bifurcation occurs at (x0, µ0)

2In higher-dimensional systems, an equilibrium may lose stability by the passage of a complex

conjugate pair of eigenvalues across the real axis. This does not lead to an equilibrium bifurcation,
since the eigenvalues are always nonzero. Instead, as we will discuss later on, it is typically

associated with the appearance or disappearance of periodic solutions in a Hopf bifurcation.
3For example, µx is small compared with µ and x3 is small compared with x2 since x is

small, and µ2 is small compared with µ since µ is small.
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• If

∂f

∂µ
(x0;µ0) = 0,

∂2f

∂x∂µ
(x0;µ0) 6= 0,

∂2f

∂2x
(x0;µ0) 6= 0

then a transcritical bifurcation occurs at (x0, µ0).
• If

∂f

∂µ
(x0;µ0) = 0,

∂2f

∂x2
(x0;µ0) = 0,

∂2f

∂x∂µ
(x0;µ0) 6= 0,

∂3f

∂x3
(x0;µ0) 6= 0

then a pitchfork bifurcation occurs at (x0, µ0)

The conditions in the theorem are rather natural; they state that the leading
nonzero terms in the Taylor expansion of f agree with the terms in the corre-
sponding normal form. Note that a saddle-node bifurcation is generic, in the sense
that other derivatives of f have to vanish at the bifurcation point if a saddle-node
bifurcation is not to occur.

In each case of Theorem 2.11, one can find local coordinates near (x0, µ0) that
put the equation f(x;µ) = 0 in the normal form for the corresponding bifurcation
in a sufficiently small neighborhood of the bifurcation point. In particular, the
bifurcation diagrams look locally like the ones considered above. The signs of the
nonzero terms determine the stability of the various branches and whether or not
the bifurcation is subcritical or supercritical.

Example 2.12. Bifurcation points for the ODE

xt = µx− ex

must satisfy
µx− ex = 0, µ− ex = 0,

which implies that (x, µ) = (1, e). This can also be seen by plotting the graphs of
y = µx and y = ex: the line y = µx is tangent to the curve y = ex at (x, y) = (1, e)
when µ = e. Writing

x = 1 + x1 + . . . , µ = e+ µ1 + . . .

we find that the Taylor approximation of the ODE near the bifurcation point is

x1t = µ1 −
e

2
x21 + . . . .

Thus, there a supercritical saddle node bifurcation at (x, µ) = (1, e). For µ > e,
the equilibrium solutions are given by

x = 1±
√

2

e
(µ− e) + . . . .

The solution with x > 1 is stable, while the solution with x < 1 is unstable.

Example 2.13. The ODE

(2.10) xt = µ2 + µx− x3

with f(x;µ) = µ2+µx−x3 has a supercritical pitchfork bifurcation at (x, µ) = (0, 0),
since it satisfies the conditions of the theorem. The quadratic term µ2 does not
affect the type of bifurcation. We will return to this equation in Example 2.14
below.
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2.9. Buckling of a rod

Consider two rigid rods of length L connected by a torsional spring with spring
constant k and subject to a compressive force of strength λ. If x is the angle of the
rods to the horizontal, then the potential energy of the system is

V (x) =
1

2
kx2 + 2λL (cosx− 1) .

Here kx2/2 is the energy required to compress the spring by an angle 2x and
2λL (1− cosx) is the work done on the system by the external force. Equilibrium
solutions satisfy V ′(x) = 0 or

x− µ sinx = 0, µ =
2λL

k
where µ is a dimensionless force parameter.

The equation has the trivial, unbuckled, solution branch x = 0. Writing

f(x;µ) = −V ′(x) = µ sinx− x,
the necessary condition for an equilibrium bifurcation to occur on this branch is

∂f

∂x
(0, µ) = µ− 1 = 0

which occurs at µ = 1. The Taylor expansion of f(x;µ) about (0, 1) is

f(x;µ) = (µ− 1)x− 1

6
x3 + . . .

Thus, there is a supercritical pitchfork bifurcation at (x, µ) = (0, 1). The bifurcating
equilbria near this point are given for 0 < µ− 1� 1 by

x =
√

6(µ− 1) + . . . .

This behavior can also be seen by sketching the graphs of y = x and y = µ sinx.
Note that the potential energy V goes from a single well to a double well as µ passes
through 1.

This one-dimensional equation provides a simple model for the buckling of an
elastic beam, one of the first bifurcation problems which was originally studied by
Euler (1757).

2.10. Imperfect bifurcations

According to Theorem 2.11, a saddle-node bifurcation is the generic bifurcation
of equilibria for a one-dimensional system, and additional conditions are required
at a bifurcation point to obtain a transcritical or pitchfork bifurcation. As a re-
sult, these latter bifurcations are not structurally stable and can be destroyed by
arbitrarily small perturbations that break the conditions under which they occur

First, let us consider a perturbed, or imperfect, pitchfork bifurcation that is
described by

(2.11) xt = λ+ µx− x3

where (λ, µ) ∈ R2 are real parameters. Note that if λ = 0, this system has the
reflectional symmetry x 7→ −x and a pirchfork bifurcation, but this symmetry is
broken when λ 6= 0.

The cubic polynomial p(x) = λ+ µx− x3 has repeated roots if

λ+ µx− x3 = 0, µ− 3x2 = 0
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which occurs if µ = 3x2 and λ = −2x3 or

4µ3 = 27λ2.

As can be seen by sketching the graph of p, there are three real roots if µ > 0 and

27λ2 < 4µ3,

and one real root if 27λ2 > 4µ3. The surface of the roots as a function of (λ, µ)
forms a cusp catastrophe.

If λ 6= 0, the pitchfork bifurcation is perturbed to a stable branch that exists for
all values of µ without any bifurcations and a supercritical saddle-node bifurcation
in which the remaining stable and unstable branches appear.

Example 2.14. The ODE (2.10) corresponds to (2.11) with λ = µ2. As this
parabola passes through the origin in the (λ, µ)-plane, we get a supercritical pitch-
fork bifurcation at (x, µ) = (0, 0). We then get a further saddle-node bifurcation at
(x, µ) = (−2/9, 4/27) when the parabola λ = µ2 crosses the curve 4µ3 = 27λ2.

Second, consider an imperfect transcritical bifurcation described by

(2.12) xt = λ+ µx− x2

where (λ, µ) ∈ R2 are real parameters. Note that if λ = 0, this system has the
equilibrium solution x = 0, but if λ < 0 there is no solution branch that is defined
for all values of µ.

The equilibrium solutions of (2.12) are

x =
1

2

(
µ±

√
µ2 + 4λ

)
,

which are real provided that µ2 + 4λ ≥ 0. If λ < 0, the transcritical bifurcation
for λ = 0 is perturbed into two saddle-node bifurcations at µ = ±2

√
−λ; while if

λ > 0, we get two non-intersecting solution branches, one stable and one unstable,
and no bifurcations occur as µ is varied.

2.11. Dynamical systems on the circle

Problems in which the dependent variable x(t) ∈ T is an angle, such as the
phase of an oscillation, lead to dynamical systems on the circle.

As an example, consider a forced, highly damped pendulum. The equation of
motion of a linearly damped pendulum of mass m and length ` with angle x(t) to
the vertical acted on by a constant angular force F is

m`xtt + δxt +mg sinx = F

where δ is a positive damping coefficient and g is the acceleration due to gravity.
The damping coefficient δ has the dimension of Force × Time. For motions

in which the damping and gravitational forces are important, an appropriate time
scale is therefore δ/mg, and we introduce a dimensionless time variable

t̃ =
mg

δ
t,

d

dt
=
mg

δ

d

dt̃
.

The angle x is already dimensionless, so we get the non-dimensionalized equation

εxt̃t̃ + xt̃ + sinx = µ
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where the dimensionless parameters ε, µ are given by

ε =
m2g`

δ2
, µ =

F

mg
.

For highly damped motions, we neglect the term εxt̃t̃ and set ε = 0. Note
that one has to be careful with such an approximation: the higher-order derivative
is a singular perturbation, and it may have a significant effect even though its
coefficient is small. For example, the second order ODE with ε > 0 requires two
initial conditions, whereas the first order ODE for ε = 0 requires only one. Thus for
the reduced equation with ε = 0 we can specify the initial location of the pendulum,
but we cannot specify its initial velocity, which is determined by the ODE. We will
return to such questions in more detail later on, but for now we simply set ε = 0.

Dropping the tilde on t̃ we then get the ODE

xt = µ− sinx,

where µ is a nondimensionalized force parameter. If µ = 0, this system has two
equilibria: a stable one at x = 0 corresponding to the pendulum hanging down, and
an unstable one at µ = π corresponding to the pendulum balanced exactly above
its fulcrum. As µ increases, these equilibria move toward each other (the stable
equilibrium is ‘lifted up’ by the external force), and when µ = 1 they coalesce and
disappear in a saddle-node bifurcation at (x, µ) = (π/2, 1). For µ > 1, there are no
equilibria. The external force is sufficiently strong to overcome the gravitational
force and the pendulum rotates continuously about its fulcrum.

2.12. Discrete dynamical systems

A one-dimensional discrete dynamical system

(2.13) xn+1 = f(xn)

is given by iterating a map f , which we assume is smooth. Its equilibria are fixed
points x̄ of f such that

x̄ = f(x̄).

The orbits, or trajectories, of (2.13) consist of a sequence of points xn rather than a
curve x(t) as in the case of an ODE. As a result, there are no topological restrictions
on trajectories of a discrete dynamical systems, and unlike the continuous case there
is no simple, general way to determine their phase portrait. In fact, their behavior
may be extremely complex, as the logistic map discussed in Section 2.15 illustrates.

There is a useful graphical way to sketch trajectories of (2.13): Draw the graphs
y = f(x), y = x and iterate points vertically to y = f(x), which updates the state,
and horizontally to y = x, which updates x-value.

The simplest discrete dynamical system is the linear scalar equation

(2.14) xn+1 = µxn.

The solution is
xn = µnx0.

If µ 6= 1, the origin x = 0 is the unique fixed point of the system. If |µ| < 1, this
fixed point is globally asymptotically stable, while if |µ| > 1 it is unstable. Note
that if µ > 0, successive iterates approach or leave the origin monotonically, while
if µ < 0, they alternate on either side of the origin. If µ = 1, then every point is a
fixed point of (2.14), while if µ = −1, then every point has period two. The map is
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invertible if µ 6= 0 when orbits are defined backward and forward in time. If µ = 0,
every point is mapped to the origin after one iteration, and orbits are not defined
backward in time.

Example 2.15. The exponential growth of a population of bacteria that dou-
bles every generation is described by (2.14) with µ = 2 where xn denotes the
population of the nth generation.

The linearization of (2.13) about a fixed point x̄ is

xn+1 = axn, a = f ′(x̄)

where the prime denotes an x-derivative. We say that the fixed point is hyperbolic
if |f ′(x̄)| 6= 1, and in that case it is stable if

|f ′(x̄)| < 1

and unstable if

|f ′(x̄)| > 1.

As for continuous dynamical systems, the stability of non-hyperbolic equilibria
(with f ′(x̄) = ±1) cannot be determined solely from their linearization.

After fixed points, the next simplest type of solution of (2.13) consists of pe-
riodic solutions. A state x1 or x2 has period two if the system has an orbit of the
form {x1, x2} where

x2 = f(x1), x1 = f(x2).

The system oscillates back and forth between the two states x1, x2.
We can express periodic orbits as fixed points of a suitable map. We write the

composition of f with itself as f2 = f ◦ f , meaning that

f2(x) = f (f(x)) .

Note that this is not the same as the square of f — for example sin2(x) = sin(sinx)
not (sinx)2 — but our use of the notation should be clear from the context. If
{x1, x2} is a period-two orbit of f , then x1, x2 are fixed points of f2 since

f2(x1) = f (f(x1)) = f(x2) = x1.

Conversely, if x1 is a fixed point of f2 and x2 = f(x1), then {x1, x2} is a period-two
orbit of (2.13).

More generally, for any N ∈ N, a period-N orbit of (2.13) consists of points
{x1, x2, x3, . . . , xN} such that

x2 = f(x1), x3 = f(x2), . . . , x1 = f(xN ).

In that case, each xi is an N -periodic solution of (2.13) and is a fixed point of fN ,
the N -fold composition of f with itself. If a point has period N , then it also has
period equal to every positive integer multiple of N . For example, a fixed point has
period equal to every positive integer, while a point with period two has period equal
to every even positive integer. If x1 is a periodic solution of (2.13), the minimal
period of x1 is the smallest positive integer N such that fN (x1) = x1. Thus, for
example, the fixed points of f4 include all fixed points of f and all two-periodic
points, as well as all points whose minimal period is four.
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2.13. Bifurcations of fixed points

Next, we consider some bifurcations of a one-dimensional discrete dynamical
system

(2.15) xn+1 = f(xn;µ)

depending on a parameter µ ∈ R. As usual, we assume that f is a smooth func-
tion. In addition to local bifurcations of fixed points that are entirely analogous to
bifurcations of equilibria in continuous dynamical systems, these systems possess
a period-doubling, or flip, bifurcation that has no continuous analog. They also
possess other, more complex, bifurcations. First, we consider bifurcations of fixed
points.

If x0 is a fixed point of (2.15) at µ = µ0, then by the implicit function theorem
the fixed-point equation

f(x;µ)− x = 0

is uniquely solvable for x close to x0 and µ close to µ0 provided that

∂f

∂x
(x0;µ0)− 1 6= 0.

Thus, necessary conditions for (x0, µ0) to be a bifurcation point of fixed points are
that

f(x0;µ0) = x0,
∂f

∂x
(x0;µ0) = 1.

The following typical bifurcations at (x, µ) = (0, 0) are entirely analogous to the
ones in (2.5), in which we replace the equation f(x;µ) = 0 for equilibria by the
equation f(x;µ)− x = 0 for fixed points:

xn+1 = µ+ xn − x2n, saddle-node;

xn+1 = (1 + µ)xn − x2n, transcritical;

xn+1 = (1 + µ)xn − x3n, pitchfork.

For completeness, we state the corresponding theorem for fixed-point bifurca-
tions.

Theorem 2.16. Suppose that f : R×R→ R is a smooth function and (x0, µ0)
satisfies the necessary condition for the bifurcation of fixed points for (2.15):

f(x0, µ0) = x0,
∂f

∂x
(x0;µ0) = 1.

• If

∂f

∂µ
(x0;µ0) 6= 0,

∂2f

∂2x
(x0;µ0) 6= 0

then a saddle-node bifurcation occurs at (x0, µ0)
• If

∂f

∂µ
(x0;µ0) = 0,

∂2f

∂x∂µ
(x0;µ0) 6= 0,

∂2f

∂2x
(x0;µ0) 6= 0

then a transcritical bifurcation occurs at (x0, µ0).
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• If

∂f

∂µ
(x0;µ0) = 0,

∂2f

∂x2
(x0;µ0) = 0,

∂2f

∂x∂µ
(x0;µ0) 6= 0,

∂3f

∂x3
(x0;µ0) 6= 0

then a pitchfork bifurcation occurs at (x0, µ0)

2.14. The period-doubling bifurcation

Suppose that (2.15) has a branch of fixed points x = x̄(µ) such that

x̄(µ) = f (x̄(µ);µ) .

The fixed point can lose stability in two ways: (a) the eigenvalue fx (x̄(µ);µ) passes
through 1; (b) the eigenvalue fx (x̄(µ);µ) passes through −1. In the first case,
we typically get a bifurcation of fixed points, but in the second case the implicit
function theorem implies that no such bifurcation occurs. Instead, the loss of
stability is typically associated with the appearance or disappearance of period two
orbits near the fixed point.

To illustrate this, we consider the following system

xn+1 = −(1 + µ)xn + x3n

with
f(x;µ) = −(1 + µ)x+ x3

The fixed points satisfy x = −(1 + µ)x+ x3, whose solutions are x = 0 and

(2.16) x = ±
√

2 + µ

for µ > −2. We have
∂f

∂x
(0;µ) = −(1 + µ),

so the fixed point x = 0 is stable if −2 < µ < 0 and unstable if µ > 0 or µ < −2.
The eigenvalue fx (0;µ) passes through 1 at µ = −2, and x = 0 gains stability

at a supercritical pitchfork bifurcation in which the two new fixed points (2.16)
appear. Note that for µ > −2

∂f

∂x
(±
√

2 + µ;µ) = 5 + 2µ > 1

so these new fixed points are unstable.
The eigenvalue fx (0;µ) passes through −1 at µ = 0, and x = 0 loses stability

at that point. As follows from the implicit function theorem, there is no bifurcation
of fixed points: the only other branches of fixed points are (2.16), equal to x = ±

√
2

at µ = 0, which are far away from x = 0. Instead, we claim that a new orbit of
period two appears at the bifurcation point.

To show this, we analyze the fixed points of the two-fold composition of f

f2(x;µ) = −(1 + µ)
[
−(1 + µ)x+ x3

]
+
[
−(1 + µ)x+ x3

]3
= (1 + µ)2x− (1 + µ)(2 + 2µ+ µ2)x3 + 3(1 + µ)2x5 − 3(1 + µ)x7 + x9.

The period-doubling bifurcation for f corresponds to a pitchfork bifurcation for f2.
Near the bifurcation point (x, µ) = (0, 0), we may approximate f2 by

f2(x;µ) = (1 + 2µ)x− 2x3 + . . . .
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The fixed points of f2 are therefore given approximately by

x = ±√µ,
and they are stable. The corresponding stable period-two orbit is {√µ,−√µ}.

If the original equation was

xn+1 = −(1 + µ)xn + ax2n + bx3n,

with a quadratically nonlinear term instead of a cubically nonlinear term, we still
get a pitchfork bifurcation in f2 at (x, µ) = (0, 0). We find similarly that if

f(x;µ) = −(1 + µ)x+ ax2 + bx3,

then
f2(x;µ) = (1 + 2µ)x− 2(a2 + b)x3 + . . . .

Thus, f2 has a pitchfork bifurcation provided that a2 + b 6= 0. Noting that

a =
1

2

∂2f

∂x2
(0; 0), b =

1

6

∂3f

∂x3
(0; 0)

this result leads to the following theorem.

Theorem 2.17. Suppose that f : R×R→ R is a smooth function and (x0, µ0)
satisfies

f(x0, µ0) = x0,
∂f

∂x
(x0;µ0) = −1.

If

∂2f

∂x∂µ
(x0;µ0) 6= 0,

1

2

[
∂2f

∂2x
(x0;µ0)

]2
+

1

3

∂3f

∂3x
(x0;µ0) 6= 0

then a period-doubling bifurcation for (2.15) occurs at (x0, µ0).

2.15. The logistic map

The discrete logistic equation is

(2.17) xn+1 = µxn (1− xn) ,

which is (2.13) with
f(x;µ) = µx(1− x).

We can interpret (2.17) as a model of population growth in which xn is the popula-
tion of generation n. In general, positive values of xn may map to negative values
of xn+1, which would not make sense when using the logistic map as a population
model. We will restrict attention to 1 ≤ µ ≤ 4, in which case f(·;µ) maps points
in [0, 1] into [0, 1]. Then the population xn+1 is µ(1− xn) times the population xn
of the previous generation. If 0 ≤ xn < 1− 1/µ, the population increases, whereas
if If 1 − 1/µ < xn ≤ 1, the population decreases. Superficially, (2.17) may appear
similar to the logistic ODE (2.2), but its qualitative properties are very different.
In particular, note that the quadratic logistic map is not monotone or invertible on
[0, 1] and is typically two-to-one.

Equation (2.17) has two branches of fixed points,

x = 0, x = 1− 1

µ
.

We have
∂f

∂x
(x, µ) = µ(1− 2x)
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Figure 1. A bifurcation diagram for the logistic map where r = µ.
(From Wikipedia.)

so that
∂f

∂x
(0, µ) = µ,

∂f

∂x

(
1− 1

µ
, µ

)
= 2− µ.

Thus, the fixed point x = 0 is unstable for µ > 1. The fixed point x = 1 − 1/µ
is stable for 1 < µ < 3 and unstable µ > 3. There is a transcritical bifurcation
of fixed points at (x, µ) = (0, 1) where these two branches exchange stability. The
fixed point x = 1 − 1/µ loses stability at µ = 3 in a supercritical period doubling
bifurcation as fx = 2− µ passes through −1.

We will not carry out a further analysis of (2.17) here. We note, however, that
there is a sequence of supercritical period doubling bifurcations corresponding to
the appearance of stable periodic orbits of order 2, 4, 8, . . . , 2k, . . . at µ = µk. These
bifurcation points have a finite limit

µ∞ = lim
k→∞

µk ≈ 3.570.

The first few values are approximately given by

µ1 = 3, µ2 = 3.449, µ3 = 3.544, µ4 = 3.564, . . . .

The bifurcation values approach their limit µ∞ geometrically, with

lim
k→∞

(
µk − µk−1
µk+1 − µk

)
= 4.6692 . . .

where 4.6692 . . . is a universal Feigenbaum constant. For µ∞ < µ ≤ 4, the logistic
map is chaotic, punctated by windows in which it has an asymptotically stable
periodic orbit of (rather remarkably) period three.

A bifurcation diagram for (2.17) is shown in Figure 1.

2.16. References

We have studied some basic examples of equilibrium bifurcations, but have not
attempted to give a general analysis, which is part of singularity or catastrophe
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theory. Further introductory discussions can be found in [4, 11]. For a systematic
account, including equilibrium bifurcations in the presence of symmetry, see [5].


