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CHAPTER 3

Two Dimensional Linear Systems of ODEs

A (first-order, autonomous, homogeneous) linear system of two ODEs has the
form

xt = ax+ by, yt = cx+ dy

where a, b, c, d are (real) constants. The matrix form is

(3.1) ~xt = A~x

where

(3.2) ~x =

(
x
y

)
, A =

(
a b
c d

)
.

The initial condition for (3.1) is

(3.3) ~x(0) = ~x0

where

~x0 =

(
x0

y0

)
and x0, y0 ∈ R are arbitrary constants.

3.1. The exponential of a linear map

The solution of the linear, autonomous, scalar IVP

xt = ax, x(0) = x0

may be written as x(t) = etax0. An analogous formula holds for systems with a
suitable definition of the exponential of a linear map, or matrix. The definition
does not depend on the dimension of the system, so we initially consider the d-
dimensional case.

Definition 3.1. If A : Rd → Rd is a linear map, or its corresponding matrix,
and t ∈ R, then the exponential etA : Rd → Rd is defined by

(3.4) etA = I + tA+
1

2!
t2A2 + · · ·+ 1

n!
tnAn + . . . .

The series (3.4) is a natural generalization of the Taylor series of the scalar
exponential function. It makes sense if A is a d× d matrix, so that its powers are
well-defined, and then the series defines a d× d matrix etA.

We remark that it is useful conceptually to distinguish between a linear map,
which is a geometrical object like a rotation of vectors, and the matrix that rep-
resents it with respect to some basis. The matrix of a given linear map depends
on the basis, not only on the map. We consider linear maps acting on Rd with its
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36 3. TWO DIMENSIONAL LINEAR SYSTEMS OF ODES

standard basis, so usually we will not distinguish between linear maps and matri-
ces, but one should still be able to view the results we discuss from a geometrical
perspective.

We summarize some properties of the matrix exponential in the following result.

Theorem 3.2. For every linear map A : Rd → Rd, or its corresponding matrix,
the series (3.4) converges absolutely for all t ∈ R. It is a differentiable function of
t, and

(3.5)
d

dt
etA = AetA = etAA.

Moreover, e0A = I and

esAetA = e(s+t)A

for all s, t ∈ R, and etA is invertible with(
etA
)−1

= e−tA.

The proof of these results is similar to the proof of the analogous results for
the usual scalar exponential function. For example, term by term differentiation of
the series (which one can show is justified) gives

d

dt
etA = A+ tA2 + · · ·+ 1

(n− 1)!
tn−1An + . . .

= A

(
I + tA+

1

2!
t2A2 + · · ·+ 1

(n− 1)!
tn−1An−1 + . . .

)
= AetA.

Similarly, if A, B commute (meaning that AB = BA) then multiplication and
rearrangement of the series for eA, eB implies that

eAeB = eA+B .

Note, however, that this relation does not hold for non-commuting maps or matri-
ces; this is a significant difference from the scalar case.

It follows from (3.5) that the solution of the IVP (3.1), (3.3) is given by

(3.6) ~x(t) = etA~x0.

To verify this, note that if ~x(t) is given by (3.6) then

d

dt
~x(t) = AetA~x0 = A~x(t),

and ~x(0) = ~x0 since e0A = I. Thus, (3.6) is the unique solution of (3.1), and

Φt = etA

is the flow map associated with the linear vector field A~x. Note that the flow map
is also linear, as follows from the superposition property of linear equations.

Let us consider some simple 2× 2 examples.

Example 3.3. The system

xt = −x, yt = −y
with

A = −
(

1 0
0 1

)
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has a vector field pointing radially inward toward the origin. The solutions are

x(t) = x0e
−t, y(t) = y0e

−t,

or (
x
y

)
=

(
e−t 0
0 e−t

)(
x0

y0

)
.

In this case, A = −I and An = (−1)nI, so that

etA = I − tI +
1

2!
t2I2 + · · ·+ (−1)n

n!
tnI + . . .

=

(
1− t+

1

2!
t2 + · · ·+ (−1)n

n!
tn + . . .

)
I

= e−tI

or

exp

[
−t
(

1 0
0 1

)]
=

(
e−t 0
0 e−t

)
in agreement with the above solution. The trajectories consist of radial lines that
approach 0 as t→∞, and the equilibrium point 0. The flow map is a contraction
by a factor e−t.

Example 3.4. The solution of

xt = −x, yt = y

with

A =

(
−1 0
0 1

)
is

x(t) = x0e
−t, y(t) = y0e

t

or (
x
y

)
=

(
e−t 0
0 et

)(
x0

y0

)
.

In this case,

An =

(
(−1)n 0

0 1

)
and

etA =

(
1 0
0 1

)
+ t

(
−1 0
0 1

)
+ · · ·+ tn

n!

(
(−1)n 0

0 1

)
+ . . .

=

(
1− t+ · · ·+ (−1)ntn

n! + . . . 0

0 1 + t+ · · ·+ tn

n! + . . .

)
=

(
e−t 0
0 et

)
.

Thus,

exp

[
t

(
−1 0
0 1

)]
=

(
e−t 0
0 et

)
,

in agreement with the above solution. The trajectories consists of branches of
the hyperbolas xy = constant, the positive and negative x and y axes, and the
equilibrium point 0. The x-values approach 0 as t → ∞ while the y-values go off
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to infinity as t → ∞ (unless y0 = 0). The flow map is a contraction by e−t in the
x-direction and an expansion by et in the y-direction.

Example 3.5. The system

xt = −y, yt = x

with

A =

(
0 −1
1 0

)
has a vector field that is orthogonal to the radial vector field. Eliminating y, we
get xtt + x = 0, and the solutions are

x(t) = x0 cos t− y0 sin t, y(t) = x0 sin t+ y0 cos t,

or (
x
y

)
=

(
cos t − sin t
sin t cos t

)(
x0

y0

)
.

In this case,
A2n = (−1)nI, A2n+1 = (−1)nA,

and using the Taylor series for cos t, sin t we get

etA = I + tA− 1

2!
t2I − 1

3!
t3A+

1

4!
t4I + . . .

=

(
1− 1

2!
t2 +

1

4!
t4 − . . .

)
I +

(
t− 1

3!
t3 +

1

5!
t5 − . . .

)
A

= (cos t)I + (sin t)A.

Thus,

exp

[
t

(
0 −1
1 0

)]
=

(
cos t − sin t
sin t cos t

)
,

in agreement with the solution above. The trajectories consist of circles centered at
the origin, and the equilibrium 0. All solutions are 2π-periodic functions of t, and
the flow map is a counter-clockwise rotation about the origin through an angle t.

Example 3.6. The system

xt = y, yt = 0

with

A =

(
0 1
0 0

)
has the solution

x(t) = x0 + y0t, y(t) = y0,

or (
x
y

)
=

(
1 t
0 1

)(
x0

y0

)
.

In this case, An = 0 for n ≥ 2 (a matrix whose powers are eventually zero is said
to be nilpotent) and (3.4) shows, in agreement with this solution, that

exp

[
t

(
0 1
0 0

)]
=

(
1 t
0 1

)
.

The x-axis consists of equilibrium, and the other trajectories are lines y = y0 with
y0 6= 0. The flow map consists of a shear by t in the x-direction.
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It is not easy to use the series definition to compute the exponential of a matrix
directly except in special cases. We can however use a similarity transformation to
reduce a general matrix to a canonical form whose matrix exponential can be easily
computed.

Proposition 3.7. Suppose that A = P−1BP is similar to a matrix B by a
nonsingular matrix P . Then the matrix exponential of A

etA = P−1etBP

is similar to the matrix exponential of B

Proof. We have

An = P−1BnP

because of the cancelation in the inner factors P−1P = I. Thus,

etA = I + tA+ · · ·+ 1

n!
tnAn + . . .

= I + tP−1BP + · · ·+ 1

n!
tnP−1BnP + . . .

= P−1

(
I + tB + · · ·+ 1

n!
tnBn + . . .

)
P

= P−1etBP.

�

A matrix is said to be diagonalizable if it is similar to a diagonal matrix Λ. In
the 2× 2 case, this means that

A = P−1ΛP, Λ =

(
λ1 0
0 λ2

)
where λ1, λ2 are the (not necessarily distinct) eigenvalues of A. We compute from
the series definition that

Λn =

(
λn1 0
0 λn2

)
and

etΛ =

(
eλ1t 0

0 eλ2t

)
.

Thus, the exponential of a diagonalizable 2× 2 matrix is given by

etA = P−1

(
eλ1t 0

0 eλ2t

)
P.

Most matrices are diagonalizable. Sufficient conditions for the diagonalizability
of a matrix are: (a) it has simple eigenvalues; or (b) it is symmetric, in which case
its eigenvalues are real and there is an orthonormal basis of eigenvectors. There
exist, however, nondiagonalizable matrices.

In the case of 2 × 2 matrices, it follows from the Jordan canonical form that
every nondiagonalizable matrix A is similar to a 2× 2 Jordan block

A = P−1JP, J =

(
λ 1
0 λ

)
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where λ is the (necessarily repeated) eigenvalue of A. To compute the exponential
of J , note that

J = Λ +N, Λ = λI, N =

(
0 1
0 0

)
Since Λ is a multiple of the identity, it commutes with N and therefore

etJ = etΛetN .

The series definition implies that etΛ = eλtI and, from Example 3.6,

etN =

(
1 t
0 1

)
.

Thus, the exponential of a nondiagonalizable 2× 2 matrix is given by

etA = eλtP−1

(
1 t
0 1

)
P.

3.2. Eigenvalues and eigenvectors

We can represent the solution of a general linear system (3.1) in terms of the
eigenvalues and (generalized) eigenvectors of A. The result is equivalent to the
representation of the matrix exponential in terms of a similarity transformation.1

For simplicity, we consider the 2 × 2 case where A is given by (3.2), although
the ideas generalize in a fairly straightforward way to systems of any dimension.

A scalar λ ∈ C is an eigenvalue of A if there exists a nonzero eigenvector ~r ∈ C2

such that

A~r = λ~r.

The eigenvalues are solutions of the characteristic equation of A,

det(A− λI) = 0.

In that case, a solution of (3.1) is given by

~x(t) = eλt~r.

If the 2 × 2 matrix A is diagonalizable, then it has has (possibly repeated)
eigenvalues {λ1, λ2} with linearly independent eigenvectors {~r1, ~r2}. The general
solution of (3.1) is given by

~x(t) = c1e
λ1t~r1 + c2e

λ2t~r2.

To satisfy the initial condition (3.3), we choose the scalar constants c1, c2 ∈ C so
that

~x0 = c1~r1 + c2~r2.

There exist unique such constants because {~r1, ~r2} are linearly independent and
hence form a basis of C2.

It is convenient here to allow real or complex eigenvalues even though the system
is real. Any complex eigenvalues come in complex-conjugate pairs, and we can take
their eigenvectors to be complex conjugates also. In that case the constants c1, c2
are complex, but for real-valued initial data c1, c2 are complex conjugates and the
solution ~x(t) is also real-valued.

1The columns of the similarity matrix P−1 consist of (generalized) eigenvectors of A.
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If A is nondiagonalizable with a repeated eigenvalue λ, then it has linearly
independent generalized eigenvectors {~r,~s} such that

(A− λI)~r = 0, (A− λI)~r = ~s.

the solution of the ODE is

~x(t) = c1e
λt~r + c2e

λt (t~r + ~s)

where the scalar constants c1, c2 are chosen so that

~x0 = c1~r + c2~s.

3.3. Classification of 2× 2 linear systems

The linear system (3.1) has the equilibrium ~x = 0, and this is the only equi-
librium if A is nonsingular. We classify the equilibrium of the 2 × 2 linear system
(3.1) in terms of the (possibly repeated) eigenvalues λ1, λ2 of A as follows.

Saddle point: If λ1, λ2 are real and of opposite signs.
Node: If λ1, λ2 are real and of the same sign. Stable if λ1, λ2 < 0 and

unstable if λ1, λ2 > 0.
Spiral point: If λ1, λ2 = τ ± iω are a complex conjugate pair with nonzero

real part. Stable if τ < 0 and unstable if τ > 0.
Center: If λ1, λ2 = ±iω are a pure imaginary, complex conjugate pair.
Singular: If λ1 or λ2 is zero, when there is a one or two dimensional subspace

of equilibria.

For instance, Example 3.3 is a stable node, Example 3.4 is a saddle point,
Example 3.5 is a center, and Example 3.6 is singular. A stable node or stable spiral
is asymptotically stable. A center is stable but not asymptotically stable. A saddle
point, unstable node or unstable spiral is unstable.

The eigenvalues λ = λ1, λ2 of the 2× 2 matrix A in (3.2) satisfy

λ2 − τλ+D = 0

where τ is the trace of A and D is the determinant of A,

τ = trA = a+ d = λ1 + λ2, D = detA = ad− bc = λ1λ2.

The eigenvalues are

λ1,2 =
1

2

(
τ ±

√
τ2 − 4D

)
.

We therefore get the following criteria for the type of the equilibrium 0 in terms of
the trace and determinant of A.

Saddle point: If D < 0.
Node: If 0 < 4D ≤ τ2. Stable if τ < 0 and unstable if τ > 0.
Spiral point: If τ 6= 0 and 4D > τ2. Stable if τ < 0 and unstable if τ > 0.
Center: If τ = 0 and D > 0.
Singular: If D = 0.

We distinguish between hyperbolic and non-hyperbolic equilibria according to
the following definition.

Definition 3.8. The equilibrium ~x = 0 of (3.1) is hyperbolic if no eigenvalue
of A has zero real part.
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Thus, a saddle point, node or spiral point is hyperbolic, but a center or singular
point is not. Hyperbolic equilibria are robust under small perturbations (such as
the inclusion of non-linear terms), but non-hyperbolic equilibria are not.

The stable (respectively, unstable) subspace Es (respectively, Eu) of 0 is the
subspace spanned by the (generalized) eigenvectors associated with eigenvectors
whose eigenvalues have negative (respectively, positive) real parts. Thus, ~x0 ∈ Es
if the solution approaches the equilibrium forward in time,

etA~x0 → 0 as t→∞,

while ~x0 ∈ Eu if the solution approaches the equilibrium backward in time,

etA~x0 → 0 as t→ −∞.

(Note that this is not equivalent to the condition that etA~x0 → ∞ as t → ∞.)
The center subspace Ec of 0 is the subspace spanned by (generalized) eigenvectors
with zero real part. The corresponding solutions may remain bounded or grow
algebraically in time.

For example, a stable node or spiral point of a 2× 2 linear system has Es = R2

and Eu = Ec = {0}; a center has Ec = R2 and Eu = Es = {0}; and a saddle
point has one-dimensional stable and unstable subspaces Es, Eu and Ec = {0}.
The center subspace of any hyperbolic equilibrium is {0}.

3.4. The linear oscillator

Consider a mass m > 0 on a Hookean spring with spring constant k > 0 subject
to linear damping with coefficient δ ≥ 0. The displacement x(t) of the mass from
equilibrium satisfies

(3.7) mxtt + δxt + kx = 0.

Introducing the momentum y = mxt, we may write this as first order system

xt =
1

m
y, yt = −kx− δy

or (
x
y

)
t

=

(
0 1/m
−k −δ

)(
x
y

)
.

The eigenvalues of this system are

λ =
1

2

[
−δ ±

√
δ2 − 4k

m

]
.

Depending on the strength of the damping, we have three possibilities for the
equilibrium:

: Undamped When δ = 0, (x, y) = 0 is a center. All solutions are periodic

with angular frequency ω =
√
k/m.

: Underdamped When 0 < δ < 2
√
km, (x, y) = 0 is a stable spiral point. All

solutions decay to zero in an oscillatory fashion as t→∞.
: Overdamped When δ > 2

√
km, (x, y) = 0 is a stable node. All solutions

eventually decay monotonically to zero (with the displacement x passing
through zero at most once).
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The damping δ = 2
√
km at which the oscillator switches from underdamped to

overdamped is called critical damping. Note that this equation is dimensionally
consistent: both δ and

√
km have the dimension of Mass/Time.

Exactly the same analysis applies to linear electrical circuits. Suppose a circuit
consists of an inductor with inductance L, a resistor with resistance R, and a
capacitor with capacitance C, placed in series. If I(t) is the current in the circuit
and Q(t) is the charge on the capacitor, then the change in voltage across the
inductor is

∆VL = LIt,

the change in voltage across the resistor is given by Ohm’s law

∆VR = RI,

and the change of voltage across the capacitor is

∆VC =
1

C
Q.

According to Kirchoff’s law the total change in voltage around the circuit is zero,
meaning that

∆VL + ∆VL + ∆VL = 0.

Moreover, since charge is conserved, we have I = Qt. It follows that Q(t) satisfies

LQtt +RQt +
1

C
Q = 0.

This equation is identical to (3.7) with L playing the role of mass, R the role of the
damping constant, and 1/C the role of the spring constant.

3.5. Flow maps and areas

An important aspect of flows is how they affect areas (or volumes) in phase
space. For example, do areas contract or increase under the flow or do they remain
the same? We consider this briefly here in the special case of 2× 2 linear systems.

The oriented area |P| of the parallelogram P spanned by vectors ~x, ~y ∈ R2 is
given by

|P| = det [~x, ~y] .

If A : R2 → R2 is a linear map, then the oriented area of the parallelogram A(P)
spanned by the vectors A~x,A~y ∈ R2 is given by

|A(P)| = det [A~x,A~y]

= det (A [~x, ~y])

= (detA)(det [~x, ~y])

= (detA)|P|

Thus, detA is the factor by which A multiplies oriented areas.
The following result related the determinant of a matrix exponential to the

trace of the matrix. Exactly the same result is true for a linear map A : Rd → Rd
in any number of dimensions d, as can be shown using the general Jordan canonical
form, but we state and prove the theorem only for the case d = 2.

Theorem 3.9. If A : R2 → R2 is a linear map, then

det etA = et trA.
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Proof. If A is diagonalizable, then

A = P−1

(
λ1 0
0 λ2

)
P,

and

etA = P−1

(
eλ1t 0

0 eλ2t

)
P.

Hence

det etA = detP−1 · det

(
eλ1t 0

0 eλ2t

)
· detP = e(λ1+λ2)t = et trA.

If A is non-diagonalizable, then

A = P−1

(
λ 1
0 λ

)
P,

and

det etA = detP−1 · det

(
eλt teλt

0 eλt

)
· detP = e2λt = et trA.

�
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For a classification of equilibria based on real canonical forms, see [9].


