
Final Exam
Math 207A, Fall 2011

1. The (normalized) Lennard-Jones potential

V (x) =
1

12x12
− 1

6x6

provides a simple model for the interaction between two molecules separated
by a distance x > 0. Graph the potential V (x) and sketch the (x, xt)-phase
plane of the ODE in x > 0 for a particle moving in this potential

xtt −
1

x13
+

1

x7
= 0.

Solution

• We have V (x)→∞ as x→ 0+ and V (x)→ 0 as x→∞. The potential
has a unique, non-degenerate minimum at x = 1 with V (1) = −1/12.
The corresponding equilibrium (x, xt) = (1, 0) is therefore a center.

• The trajectories are
1

2
x2t + V (x) = E

If E = −1/12, this is the equilibrium. If −1/12 < E < 0 this is
a periodic orbit (corresponding to a ‘bound’ state of the particles).
If E ≥ 0, the trajectory comes in from infinity, turns around and
goes out to ∞ (corresponding to a ‘scattered’ state). In that case,
since V (x) → 0 as x →∞, the velocity of the particle approaches the
constant values xt → ±

√
2E as t→ ±∞

Remark. The force between the particles −V ′(x) is zero at the equilibrium
x = 1, repulsive for x < 1, and attractive for x > 1. The attractive force
approaches zero as x → ∞. The strong short-range repulsion is due, for
example, to the Pauli exclusion of the molecules’ electron shells, while the
weak long range attraction is due, for example, to van der Waals forces.

In the problem, we assume that the particles move along a straight line; in
general, the particles would move in three space dimensions with positions
~x1(t), ~x2(t) ∈ R3 in the central potential V (| ~x1 − ~x2|), analogous to the Ke-
pler problem for planetary motion (where the potential would be the inverse
square attractive potential V = −1/|~x|2).



2. Find and classify the equilibria of the system

xt = x2 − y − 1,

yt = (x− 2) y.

Sketch the phase plane.

Solution

• From the second equation, we have x = 2 or y = 0 at an equilibrium.
Using these values and solving the first equation, we find that there are
three equilibria

(x, y) = (−1, 0), (1, 0), (2, 3).

The derivative of the vector field ~f(x, y) = (x2 − y − 1, (x− 2)y)
T

is

D~f =

(
2x −1
y x− 2

)
.

• Linearizing around (−1, 0), we get(
x
y

)
t

=

(
−2 −1
0 −3

)(
x
y

)
.

The eigenvalues are
λ = −2, −3

so this is a stable node. The ‘slow’ direction, corresponding to λ = −2
is ~r = (1, 0)T .

• Linearizing around (1, 0), we get(
x
y

)
t

=

(
2 −1
0 −1

)(
x
y

)
.

The eigenvalues are
λ = 2, −1

so this is a saddle. The unstable direction ~r1, corresponding to λ = 2,
and the stable direction ~r2, corresponding to λ = −1, are given by

~r1 =

(
1
0

)
, ~r2 =

(
1
3

)
.



• Linearizing around (2, 3), we get(
x
y

)
t

=

(
4 −1
3 0

)(
x
y

)
.

The eigenvalues are
λ = 1, 3,

so this is an unstable node. The ‘slow’ direction, corresponding to
λ = 1, is ~r = (1, 3)T .

• The system has no periodic orbits. There are unique heteroclinic orbits
from the unstable node to the saddle and the saddle to the stable node,
and a one-parameter family of heteroclinic orbits from the unstable to
the stable node.

• For this system, all the lines through the equilibria are invariant. This
clear for the x-axis y = 0. For the others, note that

d

dt
[y − (x+ 1)] = yt − xt

= (x− 2)y − x2 + y + 1

= (x− 1) [y − (x+ 1)] .

Hence if y − (x + 1) = 0 initially, which is the equation of the line
through (−1, 0) and (2, 3), then it remains zero for all t. Similarly, for
the line through (1, 0) and (2, 3),

d

dt
[y − 3(x− 1)] = yt − 3xt

= (x− 2)y − 3
(
x2 − y − 1

)
= (x+ 1) [y − 3(x− 1)] .

• In sketching the phase plane, it is also useful to look at the isoclines
where

dy

dx
=

(x− 2) y

x2 − y − 1
= constant.

In particular, the trajectories are horizontal on the lines x = 2 and
y = 0 where yt = 0, and vertical on the parabola y = x2 − 1 where
xt = 0. See the attached figures for the phase plane.



3. Consider the scalar ODE

xt = (x+ 1)(µ+ x− x2)

where µ ∈ R is a parameter.

(a) Find the equilibria and determine their stability.

(b) Draw a bifurcation diagram. What bifurcations occur as µ is varied?

(c) Sketch phase lines for qualitatively different values of µ.

(d) How would the bifurcation diagram from (b) be perturbed in a generic
imperfect bifurcation for this ODE?

Solution

• The equilibria are
x = −1

and, for µ ≥ −1/4,

x =
1±
√

1 + 4µ

2
. (1)

• Writing

f(x;µ) = (x+ 1)(µ+ x− x2)
= µ+ (1 + µ)x− x3,

we have
fx(x;µ) = 1 + µ− 3x2.

• For x = −1, we have
fx(−1, µ) = µ− 2

so the equilibrium is asymptotically stable (fx < 0) if µ < 2 and
unstable (fx > 0) if µ > 2.

• For the equilibria in (1), we find that

fx

(
(1±

√
1 + 4µ)/2;µ

)
= ∓1

2

√
1 + 4µ

[
3±

√
1 + 4µ

]
.

Thus, the plus equilibrium is asymptotically stable (fx < 0) for all
µ > −1/4. The minus equilibrium is unstable for −1/4 < µ < 2,



when 3 −
√

1 + 4µ > 0, and asymptotically stable for µ > 2, when
3 −
√

1 + 4µ < 0. Note that the minus solution branch in (1) crosses
the solution branch x = −1 at µ = 2 when this change of stability
occurs.

• There is a saddle-node bifurcation at

(x, µ) =

(
1

2
,−1

4

)
and a transcritical bifurcation at

(x, µ) = (−1, 2)

The bifurcation diagram and phase lines are shown in the attached
figures.

• A generic perturbation of this system will destroy the transcritical bi-
furcation or split it into a pair of saddle-node bifurcations (see the
attached figures).



4. Consider the system

xt = y,

yt = −x+ y
(
1− x2 − 2y2

)
.

(a) Let V (x, y) = x2 + y2 Compute Vt on trajectories. Show that V is
increasing with t (Vt ≥ 0) if r2 < 1/2 and decreasing (Vt ≤ 0) if r2 > 1,
where r =

√
x2 + y2 is the distance from the origin.

(b) Deduce that there is a periodic orbit of the system in the annulus 1/2 <
r2 < 1.

Solution

• (a) We have

Vt = 2xxt + 2yyt

= 2xy + 2y
[
−x+ y

(
1− x2 − 2y2

)]
= 2y2

(
1− x2 − 2y2

)
.

• If x2 + y2 > 1, then

1− x2 − 2y2 ≤ 1− x2 − y2 < 0

so V is decreasing (in fact, strictly decreasing unless y = 0).

• If x2 + y2 < 1/2, then

1− x2 − 2y2 ≥ 1− 2x2 − 2y2 > 0

so V is increasing (in fact, strictly increasing unless y = 0)

• (b) It follows from (a) that the annulus 1/2 ≤ r2 ≤ 1 is a trapping
region for the flow, since trajectories enter the region but cannot leave.
The only equilibrium of the system is the origin (x, y) = (0, 0), so there
are no equilibria inside the annulus. The Poincaré-Bendixson theorem
then implies that there must be a limit cycle inside the annulus.



5. Consider the expanding map E : T→ T on the circle defined by

E(θ) = 2θ (mod 2π)

for θ ∈ T, with the associated discrete dynamical system

θn+1 = 2θn (mod 2π), n ∈ N.

(a) Is the map E invertible? What is its fixed point?

(b) What are the points of period two (fixed points of E2)?

(c) If k ∈ N is any positive integer, how many points of period k (fixed points
of Ek) are there?

(d) Does E have non-periodic orbits? If so, what do you think the orbits
look like? How do nearby points typically behave under successive iterations
of E?

Solution

• (a) The map is not invertible since it is two-to-one e.g. both 0 and π
map to 0. The map stretches the circle by a factor of 2 and then wraps
it around itself twice. (Think of doing this with an elastic band.) Thus,
E maps both of the half-circles [0, π) and [π, 2π) one-to-one and onto
the whole circle. The origin θ = 0 is the only fixed point of the map.
Note that it is unstable since E ′(0) = 2 > 1.

• (b) The origin θ = 0 has period two (and minimal period one). In
addition there is an orbit with minimal period two consisting of the
points θ = 2π/3, 4π/3 e.g. modulo 2π:

E2

(
2π

3

)
= E

(
4π

3

)
=

8π

3
=

2π

3
.

Thus, there are three points with period two{
0,

2π

3
,
4π

3

}
,

two of which have minimal period two.

• (c) There are 2k − 1 points with period k (see below).



• (d) Only countably many points lie on periodic orbits, so E certainly
has non-periodic orbits since T is uncountable. ‘Typical’ orbits are
dense in T. (In fact, one can show that the set of points with dense
orbits form a set of full Lebesgue measure 2π in T.) The distance
between nearby points doubles each iteration under the action of E,
until the points separate by an angle of more than π/2, so there is
sensitive dependence on initial conditions.

Remark. This expanding map is one of the simplest example of a chaotic
map. The clearest way to understand its behavior is through the method of
symbolic dynamics. Represent an angle θ = 2πx on the circle by a binary
expansion of 0 ≤ x ≤ 1:

x = 0.x1x2x3x4 . . .

where xi = 0 or xi = 1. This representation is not quite unique, since
for example 0.00000 . . . and 0.11111 . . . both represent the angle θ = 0 or
equivalently θ = 2π, and similarly for other binary expansions terminating
in 1’s. (This is the binary analog of 1 = 0.9999 . . . .) If Σ denotes the
sequence space of these binary expansions, then the expanding map E : T→
T corresponds to a left shift σ : Σ→ Σ of the sequence space

σ (0.x1x2x3x4 . . . ) = 0.x2x3x4 . . . .

Points which eventually map to zero correspond to expansions that terminate
in all 0’s (or all 1’s). Period k points correspond to binary expansions of ratio-
nal numbers with blocks of k repeating digits. There are 2k such expansions,
which gives 2k−1 points of period k for E since the expansions 0.0000 . . . and
0.1111 . . . correspond to the same point of T. To construct a sequence with
dense orbit, under σ, list all finite sequences of length 1, 2, 3, . . . and string
them together. The results is a sequence whose digits agree to an arbitrarily
large finite number of terms with any other given sequence after sufficiently
many shifts.

More formally, we define the sequence space Σ = {0, 1}N of sequences
(x1, x2, x3, . . . ) of zeros and ones xi ∈ {0, 1}, the left shift σ : Σ→ Σ by

σ((x1, x2, x3, . . . ) = (x2, x3, . . . ),

and the map ψ : Σ→ T by

ψ(x1, x2, x3, . . . ) = 2π (0.x1x2x3 . . . ) .



Then
E ◦ ψ = ψ ◦ σ

meaning that E is topologically semi-conjugate to σ. (It is only semi-
conjugate because the map ψ is not one-to-one, so it is not invertible.) We
can therefore analyze the dynamics of E in terms of the easier to understand
shift-map σ. Similar ideas can be used to analyze the dynamics of other
chaotic dynamical systems such as the logistic map, Smale horseshoes, and
homoclinic tangles.


