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CHAPTER 1

Introduction

We will begin by discussing some general properties of initial value problems
(IVPs) for ordinary differential equations (ODEs) as well as the basic underlying
mathematical theory.

1.1. First-order systems of ODEs

Does the Flap of a Butterfly’s
Wings in Brazil Set off a Tornado
in Texas?

Edward Lorenz, 1972

We consider an autonomous system of first-order ODEs of the form

(1.1) xt = f(x)

where x(t) ∈ Rd is a vector of dependent variables, f : Rd → Rd is a vector field,
and xt is the time-derivative, which we also write as dx/dt or ẋ. In component
form, x = (x1, . . . , xd),

f(x) = (f1(x1 . . . , xd), . . . , fn(x1, . . . xd)) ,

and the system is

x1t = f1(x1 . . . , xd),

x2t = f2(x1 . . . , xd),

. . . ,

xdt = fd(x1 . . . , xd).

We may regard (1.1) as describing the evolution in continuous time t of a dynamical
system with finite-dimensional state x(t) of dimension d.

Autonomous ODEs arise as models of systems whose laws do not change in
time. They are invariant under translations in time: if x(t) is a solution, then so is
x(t+ t0) for any constant t0.

Example 1.1. The Lorenz system for (x, y, z) ∈ R3 is

xt = σ(y − x),

yt = rx− y − xz,
zt = xy − βz.

(1.2)

The system depends on three positive parameters σ, r, β; a commonly studied case
is σ = 10, r = 28, and β = 4/3. Lorenz (1963) obtained (1.2) as a truncated model
of thermal convection in a fluid layer, where σ has the interpretation of a Prandtl
number(the ratio of kinematic viscosity and thermal diffusivity), r corresponds to

1



2 1. INTRODUCTION

a Rayleigh number, which is a dimensionless parameter proportional to the tem-
perature difference across the fluid layer and the gravitational acceleration acting
on the fluid, and β is a ratio of the height and width of the fluid layer.

Lorenz discovered that solutions of (1.2) may behave chaotically, showing that
even low-dimensional nonlinear dynamical systems can behave in complex ways.
Solutions of chaotic systems are sensitive to small changes in the initial conditions,
and Lorenz used this model to discuss the unpredictability of weather (the “butterfly
effect”).

If x̄ ∈ Rd is a zero of f , meaning that

(1.3) f(x̄) = 0,

then (1.1) has the constant solution x(t) = x̄. We call x̄ an equilibrium solution,
or steady state solution, or fixed point of (1.1). An equilibrium may be stable or
unstable, depending on whether small perturbations of the equilibrium decay —
or, at least, remain bounded — or grow. (See Definition 1.14 below for a precise
definition.) The determination of the stability of equilibria will be an important
topic in the following.

Other types of ODEs can be put in the form (1.1). This rewriting does not
simplify their analysis, and may obscure the specific structure of the ODEs, but it
shows that (1.1) is rather a general form.

Example 1.2. A non-autonomous system for x(t) ∈ Rd has the form

(1.4) xt = f(x, t)

where f : Rd × R → Rd. A nonautonomous ODE describes systems governed by
laws that vary in time e.g. due to external influences. Equation (1.4) can be written
as an autonomous (‘suspended’) system for y = (x, s) ∈ Rn+1 with s = t as

xt = f(x, s), st = 1.

Note that this increases the order of the system by one, and even if the original
system has an equilibrium solution x(t) = x̄ such that f(x̄, t) = 0, the suspended
system has no equilibrium solutions for y.

Higher-order ODEs can be written as first order systems by the introduction
of derivatives as new dependent variables.

Example 1.3. A second-order system for x(t) ∈ Rd of the form

(1.5) xtt = f(x, xt)

can be written as a first-order system for z = (x, y) ∈ R2d with y = xt as

xt = y, yt = f(x, y).

Note that this doubles the dimension of the system.

Example 1.4. In Newtonian mechanics, the position x(t) ∈ Rd of a particle
of mass m moving in d space dimensions in a spatially-dependent force-field F (x),
such as a planet in motion around the sun, satisfies

mxtt = F (x).
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If p = mxt is the momentum of the particle, then (x, p) satisfies the first-order
system

(1.6) xt =
1

m
p, pt = F (x).

A conservative force-field is derived from a potential V : Rd → R,

F = −∂V
∂x

, (F1, . . . , Fd) =

(
∂V

∂x1
, . . . ,

∂V

∂xd

)
.

We use ∂/∂x, ∂/∂p to denote the derivatives, or gradients with respect to x, p
respectively. In that case, (1.6) becomes the Hamiltonian system

(1.7) xt =
∂H

∂p
, pt = −∂H

∂x

where the Hamiltonian

H(x, p) =
1

2m
p2 + V (x)

is the total energy (kinetic + potential) of the particle. The Hamiltonian is a
conserved quantity of (1.7), since by the chain rule

d

dt
H (x(t), p(t)) =

∂H

∂x
· dx
dt

+
∂H

∂p
· dx
dt

= −∂H
∂x
· ∂H
∂p

+
∂H

∂p
· ∂H
∂x

= 0.

Thus, solutions (x, p) of (1.7) lie on the level surfaces H(x, p) = constant.

1.2. Existence and uniqueness theorem for IVPs

An initial value problem (IVP) for (1.1) consists of solving the ODE subject to
an initial condition (IC) for x:

xt = f(x),

x(0) = x0.
(1.8)

Here, x0 ∈ Rd is a given constant vector. For an autonomous system, there is no
loss of generality in imposing the initial condition at t = 0, rather than some other
time t = t0.

For a first-order system, we impose initial data for x. For a second-order system,
such as (1.5), we impose initial data for x and xt, and analogously for higher-
order systems. The ODE in (1.8) determines xt(0) from x0, and we can obtain
all higher order derivatives x(n)(0) by differentiating the equation with respect to
t and evaluating the result at t = 0. Thus, it reasonable to expect that (1.8)
determines a unique solution, and this is indeed true provided that f(x) satisfies a
mild smoothness condition, called Lipschitz continuity, which is nearly always met
in applications. Before stating the existence-uniqueness theorem, we explain what
Lipschitz continuity means.

We denote by

|x| =
√
x21 + · · ·+ x2d

the Euclidean norm of a vector x ∈ Rd.
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Definition 1.5. A function f : Rd → Rd is locally Lipschitz continuous on Rd,
or Lipschitz continuous for short, if for every R > 0 there exists a constant M > 0
such that

|f(x)− f(y)| ≤M |x− y| for all x, y ∈ Rd such that |x|, |y| ≤ R.
We refer to M as a Lipschitz constant for f .

A sufficient condition for f = (f1, . . . , fd) to be a locally Lipschitz continuous
function of x = (x1, . . . , xd) is that f is continuous differentiable (C1), meaning
that all its partial derivatives

∂fi
∂xj

, 1 ≤ i, j ≤ d

exist and are continuous functions.
To show this, note that from the fundamental theorem of calculus

f(x)− f(y) =

∫ 1

0

d

ds
f (y + s(x− y)) ds

=

∫ 1

0

Df (y + s(x− y)) (x− y) ds.

Here Df is the derivative of f , whose matrix is the Jacobian matrix of f with
components ∂fi/∂xj . Hence

|f(x)− f(y)| ≤
∫ 1

0

|Df (y + s(x− y)) (x− y)| ds

≤
(∫ 1

0

‖Df (y + s(x− y))‖ ds
)
|x− y|

≤M |x− y|

where ‖Df‖ denotes the Euclidean matrix norm of Df and

M = max
0≤s≤1

‖Df (y + s(x− y))‖ .

For scalar-valued functions, this result also follows from the mean value theorem.

Example 1.6. The function f : R→ R defined by f(x) = x2 is locally Lipschitz
continuous on R, since it is continuously differentiable. The function g : R → R
defined by g(x) = |x| is Lipschitz continuous, although it is not differentiable at
x = 0. The function h : R→ R defined by h(x) = |x|1/2 is not Lipschitz continuous
at x = 0, although it is continuous.

The following result, due to Picard and Lindelöf, is the fundamental local ex-
istence and uniqueness theorem for IVPs for ODEs. It is a local existence theorem
because it only asserts the existence of a solution for sufficiently small times, not
necessarily for all times.

Theorem 1.7 (Existence-uniqueness). If f : Rd → Rd is locally Lipschitz
continuous, then there exists a unique solution x : I → Rd of (1.8) defined on some
time-interval I ⊂ R containing t = 0.

In practice, to apply this theorem to (1.8), we usually just have to check that
the right-hand side f(x) is a continuously differentiable function of the dependent
variables x.
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We will not prove Theorem 1.7 here, but we explain the main idea of the proof.
Since it is impossible, in general, to find an explicit solution of a nonlinear IVP
such as (1.8), we have to construct the solution by some kind of approximation
procedure. Using the method of Picard iteration, we rewrite (1.8) as an equivalent
integral equation

(1.9) x(t) = x0 +

∫ t

0

f (x(s)) ds.

This integral equation formulation includes both the initial condition and the ODE.
We then define a sequence xn(t) of functions by iteration, starting from the constant
initial data x0:

(1.10) xn+1(t) = x0 +

∫ t

0

f (xn(s)) ds, n = 1, 2, 3, . . . .

Using the Lipschitz continuity of f , one can show that this sequence converges
uniformly on a sufficiently small time interval I to a unique function x(t). Taking
the limit of (1.10) as n → ∞, we find that x(t) satisfies (1.9), so it is the solution
of (1.8).

Two simple scalar examples illustrate Theorem 1.7. The first example shows
that solutions of nonlinear IVPs need not exist for all times.

Example 1.8. Consider the IVP

xt = x2, x(0) = x0.

For x0 6= 0, we find by separating variables that the solution is

(1.11) x(t) = −
(

1

t− 1/x0

)
.

If x0 > 0, the solution exists only for −∞ < t < t0 where t0 = 1/x0, and x(t)→ −∞
as t → t0. Note that the larger the initial data x0 the smaller the ‘blow-up’ time
t0. If x0 < 0, then t0 < 0 and the solution exists for t0 < t < ∞. Only if x0 = 0
does the solution x(t) = 0 exists for all times t ∈ R.

One might consider using (1.11) past the time t0, but continuing a solution
through infinity does not make much sense in evolution problems. In applications,
the appearance of a singularity typically signifies that the assumptions of the math-
ematical model have broken down in some way.

The second example shows that solutions of (1.8) need not be unique if f is
not Lipschitz continuous.

Example 1.9. Consider the IVP

(1.12) xt = |x|1/2, x(0) = 0.

The right-hand side of the ODE, f(x) = |x|1/2, is not differentiable or Lipschitz
continuous at the initial data x = 0. One solution is x(t) = 0, but this is not the
only solution. Separating variables in the ODE, we get the solution

x(t) =
1

4
(t− t0)2.

Thus, for any t0 ≥ 0, the function

x(t) =

{
0 if t ≤ t0
(1/4)(t− t0)2 if t > t0
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is also a solution of the IVP (1.12). The parabolic solution can ‘take off’ spontan-
teously with zero derivative from the zero solution at any nonnegative time t0. In
applications, a lack of uniqueness typically means that something is missing from
the mathematical model.

If f(x) is only assumed to be a continuous function of x, then solutions of (1.8)
always exist (this is the Peano existence theorem) although they may fail to be
unique, as shown by Example 1.9. In future, we will assume that f is a smooth
function; typically, f will be C∞, meaning that is has continuous derivatives of all
orders. In that case, the issue of non-uniqueness does not arise.

Even for arbitrarily smooth functions f , the solution of the nonlinear IVP (1.8)
may fail to exist for all times if f(x) grows faster than a linear function of x, as
in Example 1.8. According to the following theorem, the only way in which global
existence can fail is if the solution ‘escapes’ to infinity. We refer to this phenomenon
informally as ‘blow-up.’

Theorem 1.10 (Extension). If f : Rd → Rd is locally Lipschitz continuous,
then the solution x : I → Rd of (1.8) exists on a maximal time-interval

I = (T−, T+) ⊂ R

where −∞ ≤ T− < 0 and 0 < T+ ≤ ∞. If T+ < ∞, then |x(t)| → ∞ as t ↑ T+,
and if T− > −∞, then |x(t)| → ∞ as t ↓ T−,

This theorem implies that we can continue a solution of the ODE so long as it
remains bounded.

Example 1.11. Consider the function defined for t 6= 0 by

x(t) = sin

(
1

t

)
.

This function cannot be extended to a differentiable, or even continuous, function
at t = 0 even though it is bounded. This kind of behavior cannot happen for
solutions of ODEs with continuous right-hand sides, because the ODE implies that
the derivative xt remains bounded if the solution x remains bounded. On the other
hand, an ODE may have a solution like x(t) = 1/t, since the derivative xt only
becomes large when x itself becomes large.

Example 1.12. Theorem 1.7 implies that the Lorenz system (1.1) with arbi-
trary initial conditions

x(0) = x0, y(0) = y0, z(0) = z0

has a unique solution defined on some time interval containing 0, since the right
hand side is a smooth (in fact, quadratic) function of (x, y, z). The theorem does
not imply, however, that the solution exists for all t.

Nevertheless, we claim that when the parameters (σ, r, β) are positive the so-
lution exists for all t ≥ 0. From Theorem 1.10, this conclusion follows if we can
show that the solution remains bounded, and to do this we introduce a suitable
Lyapunov function. A convenient choice is

V (x, y, z) = rx2 + σy2 + σ(z − 2r)2.
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Using the chain rule, we find that if (x, y, z) satisfies (1.2), then

d

dt
V (x, y, z) = 2rxxt + 2σyyt + 2σ(z − 2r)zt

= 2rσx(y − x) + 2σy(rx− y − xz) + 2σ(z − 2r)(xy − βz)
= −2σ

[
rx2 + y2 + β(z − r)2

]
+ 2βσr2.

Hence, if W (x, y, z) > βr2, where

W (x, y, z) = rx2 + y2 + β(z − r)2,

then V (x, y, z) is decreasing in time. This means that if C is sufficiently large that
the ellipsoid V (x, y, z) < C contains the ellipsoid W (x, y, z) ≤ βr2, then solutions
cannot escape from the region V (x, y, z) < C forward in time, since they move
‘inwards’ across the boundary V (x, y, z) = C. Therefore, the solution remains
bounded and exists for all t ≥ 0.

Note that this argument does not preclude the possibility that solutions of (1.2)
blow up backwards in time. The Lorenz system models a forced, dissipative system
and its dynamics are not time-reversible. (This contrasts with the dynamics of
conservative, Hamiltonian systems, which are time-reversible.)

1.3. Linear systems of ODEs

An IVP for a (homogeneous, autonomous, first-order) linear system of ODEs
for x(t) ∈ Rd has the form

xt = Ax,

x(0) = x0
(1.13)

where A is a d × d matrix and x0 ∈ Rd. This system corresponds to (1.8) with
f(x) = Ax. Linear systems are much simpler to study than nonlinear systems, and
perhaps the first question to ask of any equation is whether it is linear or nonlinear.

The linear IVP (1.13) has a unique global solution, which is given explicitly by

x(t) = etAx0, −∞ < t <∞

where

etA = I + tA+
1

2
t2A2 + · · ·+ 1

n!
tnAn + . . .

is the matrix exponential.
If A is nonsingular, then (1.13) has a unique equilibrium solution x = 0. This

equilibrium is stable if all eigenvalues of A have negative real parts and unstable
if some eigenvalue of A has positive real part. If A is singular, then there is a
ν-dimensional subspace of equilibria where ν is the nullity of A.

Linear systems are important in their own right, but they also arise as approx-
imations of nonlinear systems. Suppose that x̄ is an equilibrium solution of (1.1),
satisfying (1.3). Then writing

x(t) = x̄+ y(t)

and Taylor expanding f(x) about x̄, we get

f(x̄+ y) = Ay + . . .
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where A is the derivative of f evaluated at x̄, with matrix (aij):

A = Df(x̄), aij =
∂fi
∂xj

(x̄).

The linearized approximation of (1.1) at the equilibrium x̄ is then

yt = Ay.

An important question is if this linearized system provides a good local approxi-
mation of the nonlinear system for solutions that are near equilibrium. This is the
case under the following condition.

Definition 1.13. An equilibrium x̄ of (1.1) is hyperbolic if Df(x̄) has no
eigenvalues with zero real part.

Thus, for a hyperbolic equilibrium, all solutions of the linearized system grow
or decay exponentially in time. According to the Hartman-Grobman theorem, if x̄
is hyperbolic, then the flows of the linearized and nonlinear system are (topologi-
cally) equivalent near the equilibrium. In particular, the stability of the nonlinear
equilibrium is the same as the stability of the equilibrium of the linearized system.
One has to be careful, however, in drawing conclusions about the behavior of the
nonlinear system from the linearized system if Df(x̄) has eigenvalues with zero real
part. In that case the nonlinear terms may cause the growth or decay of perturba-
tions from equilibrium, and the behavior of solutions of the nonlinear system near
the equilibrium may differ qualitatively from that of the linearized system.

Non-hyperbolic equilibria are not typical for specific systems, since one does
not expect the eigenvalues of a given matrix to have a real part that is exactly
equal to zero. Nevertheless, non-hyperbolic equilibria arise in an essential way in
bifurcation theory when an eigenvalue of a system that depends on some parameter
has real part that passes through zero.

1.4. Phase space

it may happen that small
differences in the initial conditions
produce very great ones in the final
phenomena

Henri Poincaré, 1908

Very few nonlinear systems of ODEs are explicitly solvable. Therefore, rather
than looking for individual analytical solutions, we try to understand the qualitative
behavior of their solutions. This global, geometrical approach was introduced by
Poincaré (1880).

We may represent solutions of (1.8) by solution curves, trajectories, or orbits,
x(t) in phase, or state, space Rd. These trajectories are integral curves of the
vector field f , meaning that they are tangent to f at every point. The existence-
uniqueness theorem implies if the vector field f is smooth, then a unique trajectory
passes through each point of phase space and that trajectories cannot cross. We
may visualize f as the steady velocity field of a fluid that occupies phase space and
the trajectories as particle paths of the fluid.
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Let x(t;x0) denote the solution of (1.8), defined on its maximal time-interval
of existence T−(x0) < t < T+(x0). The existence-uniqueness theorem implies that
we can define a flow map, or solution map, Φt : Rd → Rd by

Φt(x0) = x(t;x0), T−(x0) < t < T+(x0).

That is, Φt maps the initial data x0 to the solution at time t. Note that Φt(x0) is
not defined for all t ∈ R, x0 ∈ Rd unless all solutions exist globally. In the fluid
analogy, Φt may be interpreted as the map that takes a particle from its initial
location at time 0 to its location at time t.

The flow map Φt of an autonomous system has the group property that

Φt ◦ Φs = Φt+s

where ◦ denotes the composition of maps i.e. solving the ODE for time t + s is
equivalent to solving it for time s then for time t. We remark that the solution map
of a non-autonomous IVP,

xt = f(x, t), x(t0) = x0

with solution x(t;x0, t0), is defined by

Φt,t0(x0) = x(t;x0, t0).

The map depends on both the initial and final time, not just their difference, and
satisfies

Φt,s ◦ Φs,r = Φt,r.

If x̄ is an equilibrium solution of (1.8), with f(x̄) = 0, then

Φt(x̄) = x̄,

which explains why equilibria are referred to as fixed points (of the flow map).
We may state a precise definition of stability in terms of the flow map. There are
many different, and not entirely equivalent definitions, of stability; we give only the
simplest and most commonly used ones.

Definition 1.14. An equilibrium x̄ of (1.8) is Lyapunov stable (or stable, for
short) if for every ε > 0 there exists δ > 0 such that if |x− x̄| < δ then

|Φt(x)− x̄| for all t ≥ 0.

The equilibrium is asymptotically stable if it is Lyapunov stable and there exists
η > 0 such that if |x− x̄| < η then

Φt(x)→ x̄ as t→∞.

Thus, stability means that solutions which start sufficiently close to the equi-
librium remain arbitrarily close for all t ≥ 0, while asymptotic stability means that
in addition nearby solutions approach the equilibrium as t→∞. Lyapunov stabil-
ity does not imply asymptotic stability since, for example, nearby solutions might
oscillate about an equilibrium without decaying toward it. Also, it is not sufficient
for asymptotic stability that all nearby solutions approach the equilibrium, because
they could make large excursions before approaching the equilibrium, which would
violate Lyapunov stability.

The next result implies that the solution of an IVP depends continuously on
the initial data, and that the flow map of a smooth vector field is smooth. Here,
‘smooth’ means, for example, C1 or C∞.
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Theorem 1.15 (Continuous dependence on initial data). If the vector field f in
(1.8) is locally Lipschitz continuous, then the corresponding flow map Φt : Rd → Rd
is locally Lipschitz continuous. Moreover, the existence times T+ (respectively, T−)
are lower (respectively, upper) semi-continuous function of x0. If the vector field f
in (1.8) is smooth, then the corresponding flow map Φt : Rd → Rd is smooth.

Here, the lower-semicontinuity of T+ means that

T+(x0) ≤ lim inf
x→x0

T+(x),

so that solutions with initial data near x0 exist for essentially as long, or perhaps
longer, than the solution with initial data x0.

Theorem 1.15 means that solutions remain close over a finite time-interval if
their initial data are sufficiently close. After long enough times, however, two
solutions may diverge by an arbitrarily large amount however close their initial
data.

Example 1.16. Consider the scalar, linear ODE xt = x. The solutions x(t),
y(t) with initial data x(0) = x0, y(0) = y0 are given by

x(t) = x0e
t, y(t) = y0e

t.

Suppose that [0, T ] is any given time interval, where T > 0. If |x0 − y0| ≤ εe−T ,
then the solutions satisfy |x(t)− y(t)| ≤ ε for all 0 ≤ t ≤ T , so the solutions remain
close on [0, T ], but |x(t)− y(t)| → ∞ as t→∞ whenever x0 6= y0.

Not only do the trajectories depend continuously on the initial data, but if f
is Lipschitz continuous they can diverge at most exponentially quickly in time. If
M is the Lipschitz constant of f and x(t), y(t) are two solutions of (1.8), then

d

dt
|x− y| ≤M |x− y|.

It follows from Gronwall’s inequality that if x(0) = x0, y(0) = y0, then

|x(t)− y(t)| ≤ |x0 − y0|eMt.

The local exponential divergence (or contraction) of trajectories may be different
in different directions, and is measured by the Lyapunov exponents of the system.
The largest such exponent is called the Lyapunov exponent of the system. Chaotic
behavior occurs in systems with a positive Lyapunov exponent and trajectories that
remain bounded; it is associated with the local exponential divergence of trajectories
(essentially a linear phenomenon) followed by a global folding (typically as a result
of nonlinearity).

One way to organize the study of dynamical systems is by the dimension of
their phase space (following the Trolls of Discworld: one, two, three, many, and
lots). In one or two dimensions, the non-intersection of trajectories strongly re-
stricts their possible behavior: in one dimension, solutions can only increase or
decrease monotonically to an equilibrium or to infinity; in two dimensions, oscilla-
tory behavior can occur. In three or more dimensions complex behavior, including
chaos, is possible.

For the most part, we will consider dynamical systems with low-dimensional
phase spaces (say of dimension d ≤ 3). The analysis of high-dimensional dynam-
ical systems is usually very difficult, and may require (more or less well-founded)
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probabilistic assumptions, or continuum approximations, or some other type of
approach.

Example 1.17. Consider a gas composed of N classical particles of mass m
moving in three space dimensions with an interaction potential V : R3 → R. We
denote the positions of the particles by x = (x1, x2, . . . , xN ) and the momenta by
p = (p1, p2, . . . , pN ), where xi, pi ∈ R3. The Hamiltonian for this system is

H(x, p) =
1

2m

N∑
i=1

p2i +
1

2

∑
1≤i 6=j≤N

V (xi − xj) ,

and Hamilton’s equations are

dxi
dt

=
1

m
pi,

dpi
dt

= −
∑
j 6=i

∂V

∂x
(xi − xj) .

The phase space of this system has dimension 6N . For a mole of gas, we have
N = NA where NA ≈ 6.02 × 1023 is Avogadro’s number, and this dimension is
extremely large.

In kinetic theory, one considers equations for probability distributions of the
particle locations and velocities, such as the Boltzmann equation. One can also ap-
proximate some solutions by partial differential fluid equations, such as the Navier-
Stokes equations, for suitable averages.

We will mostly consider systems whose phase space is Rd. More generally, the
phase space of a dynamical system may be a manifold. We will not give the precise
definition of a manifold here; roughly speaking, a d-dimensional manifold is a space
that ‘looks’ locally like Rd, with a d-dimensional local coordinate system about
each point, but which may have a different global, topological structure. The d-
dimensional sphere Sd is a typical example. Phase spaces that are manifolds arise,
for example, if some of the state variables represent angles.

Example 1.18. The motion of an undamped pendulum of length ` in a gravi-
tational field with acceleration g satisfies the pendulum equation

θtt +
g

`
sin θ = 0

where θ ∈ T is the angle of the pendulum to the vertical, measured in radians.
Here, T = R/(2πZ) denotes the circle; angles that differ by an integer multiple of
2π are equivalent. Writing the pendulum equation as a first-order system for (θ, v)
where v = θt ∈ R is the angular velocity, we get

θt = v, vt = −g
`

sin θ

The phase space of this system is the cylinder T × R. This phase space may be
‘unrolled’ into R2 with points on the θ-axis identified modulo 2π, but it is often
conceptually clearer to keep the actual cylindrical structure and θ-periodicity in
mind.

Example 1.19. The phase space of a rotating rigid body, such as a tumbling
satellite, may be identified with the group SO(3) of rotations about its center of
mass from some fixed reference configuration. The three Euler angles of a rotation
give one possible local coordinate system on the phase space.
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Solutions of an ODE with a smooth vector field on a compact phase space
without boundaries, such as Sd, exist globally in time since they cannot escape to
infinity (or hit a boundary).

1.5. Bifurcation theory

Most applications lead to equations which depend on parameters that charac-
terize properties of the system being modeled. We write an IVP for a first-order
system of ODEs for x(t) ∈ Rd depending on a vector of parameters µ ∈ Rm as

xt = f(x;µ),

x(0) = x0
(1.14)

where f : Rd × Rm → Rd.
In applications, it is important to determine a minimal set of dimensionless

parameters on which the problem depends and to know what parameter regimes
are relevant e.g. if some dimensionless parameters are very large or small.

Example 1.20. The Lorentz system (1.2) for (x, y, z) ∈ R3 depends on three
parameters (σ, r, β) ∈ R3, which we assume to be positive. We typically think of
fixing (σ, β) and increasing r, which in the original convection problem corresponds
to fixing the fluid properties and the dimensions of the fluid layer and increasing
the temperature difference across it.

If the vector field in (1.14) depends smoothly (e.g. C1 or C∞) on the parameter
µ, then so does the flow map. Explicitly, if x(t;x0;µ) denotes the solution of (1.14),
then we define the flow map Φt by

Φt(x0;µ) = x(t;x0;µ).

Theorem 1.21 (Continuous dependence on parameters). If the vector field
f : Rd × Rm → Rd in (1.14) is smooth, then the corresponding flow map Φt :
Rd × Rm → Rd is smooth.

Bifurcation theory is concerned with changes in the qualitative behavior of the
solutions of (1.14) as the parameter µ is varied. It may be difficult to carry out a full
bifurcation analysis of a nonlinear dynamical system, especially when it depends
on many parameters.

The simplest type of bifurcation is the bifurcation of equilbria. The equilibrium
solutions of (1.14) satisfy

f(x̄;µ) = 0,

so an analysis of equilibrium bifurcations corresponds to understanding how the
solutions x̄(µ) ∈ Rd of this d × d system of nonlinear, algebraic equations depend
upon the parameter µ. We refer to a smooth solution x̄ : I → Rd in a maximal
domain I as a solution branch or a branch of equilibria.

There is a closely related dynamical aspect concerning how the stability of the
equilibria change as the parameter µ varies. If x̄(µ) is a branch of equilibrium
solutions, then the linearization of the system about x̄ is

xt = A(µ)x, A(µ) = Dxf (x̄(µ);µ) .

Equilibria lose stability if some eigenvalue λ(µ) of A crosses from the left-half of
the complex plane into the right-half plane as µ varies. By the implicit function
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theorem, equilibrium bifurcations are necessarily associated with a real eigenvalue
passing through zero, so that A is singular at the bifurcation point.

Equilibrium bifurcations are not the only kind, and the dynamic behavior of
a system may change without a change in the equilibrium solutions For example,
time-periodic solutions may appear or disappear in a Hopf bifurcation, which occurs
where a complex-conjugate pair of complex eigenvalues of A crosses into the right-
half plane, or there may be global changes in the geometry of the trajectories in
phase space, as in a homoclinic bifurcation.

1.6. Discrete dynamical systems

Not only in research, but also in
the everyday world of politics and
economics, we would all be better
off if more people realised that
simple nonlinear systems do not
necessarily possess simple
dynamical properties

Robert May, 1976

A (first-order, autonomous) discrete dynamical system for xn ∈ Rd has the
form

(1.15) xn+1 = f(xn)

where f : Rd → Rd and n ∈ Z is a discrete time variable.
The orbits, or trajectories of (1.15) consist of a sequence of points {xn} that is

obtained by iterating the map f . (They are not curves like the orbits of a continuous
dynamical system.) If fn = f ◦ f ◦ · · · ◦ f denotes the n-fold composition of f , then

xn = fn(x0).

If f is invertible, these orbits exists forward and backward in time (n ∈ Z), while if f
is not invertible, they exist in general only forward in time (n ∈ N). An equilibrium
solution x̄ of (1.15) is a fixed point of f that satisfies

f(x̄) = x̄,

and in that case xn = x̄ for all n.
A linear discrete dynamical system has the form

(1.16) xn+1 = Bxn,

where B is a linear transformation on Rd. The solution is

xn = Bnx0.

The linear system (1.16) has the unique fixed point x̄ = 0 if I −B is a nonsingular
linear map. This fixed point is asymptotically stable if all eigenvalues λ ∈ C of B
lie in the unit disc, meaning that |λ| < 1. It is unstable if B has some eigenvalue
with |λ| > 1 in the exterior of the unit disc.

The linearization of (1.15) about a fixed point x̄ is

xn+1 = Bxn, B = Df(x̄).
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Analogously to the case of continuous systems, we can determine the stability of the
fixed point from the stability of the linearized system under a suitable hyperbolicity
assumption.

Definition 1.22. A fixed point x̄ of (1.15) is hyperbolic if Df(x̄) has no
eigenvalues with absolute value equal to one.

If x̄ is a hyperbolic fixed point of (1.15), then it is asymptotically stable if all
eigenvalues of Df(x̄) lie inside the unit disc, and unstable if some eigenvalue lies
outside the unit disc.

The behavior of even one-dimensional discrete dynamical systems may be com-
plicated. The biologist May (1976) drew attention to the fact that the logistic
map,

xn+1 = µxn (1− xn) ,

leads to a discrete dynamical system with remarkably intricate behavior, even
though the corresponding continuous logistic ODE

xt = µx(1− x)

is simple to analyze completely. Another well-known illustration of the complexity
of discrete dynamical systems is the fractal structure of Julia sets for complex dy-
namical systems (with two real dimensions) obtained by iterating rational functions
f : C→ C.

Discrete dynamical systems may arise directly as models e.g. in population
ecology, xn might represent the population of the nth generation of species. They
also arise from continuous dynamical systems.

Example 1.23. If Φt is the flow map of a continuous dynamical system with
globally defined solutions, then the time-one map Φ1 defines an invertible discrete
dynamical system. The dimension of the discrete system is the same as the dimen-
sion of the continuous one.

Example 1.24. The time-one map of a linear system of ODEs xt = Ax is

B = eA.

Eigenvalues of A in the left-half of the complex plane, with negative real part, map
to eigenvalues of B inside the unit disc, and eigenvalues of A is the right-half-plane
maps to eigenvalues of B outside the unit disc. Thus, the stability properties of the
fixed point x̄ = 0 in the continuous and discrete descriptions are consistent.

Example 1.25. Consider a non-autonomous system for x ∈ Rd that depends
periodically on time,

xt = f(x, t), f(x, t+ 1) = f(x, t).

We define the corresponding Poincaré map Φ : Rd → Rd by

Φ : x(0) 7→ x(1).

Then Φ defines an autonomous discrete dynamical system of dimension d, which
is one less than the dimension d + 1 of the original system when it is written in
autonomous form. This reduction in dimension makes the dynamics of the Poincaré
map easier to visualize than that the original flow, especially when d = 2. Moreover,
by continuous dependence, trajectories of the original system remain arbitrarily
close over the entire time-interval 0 ≤ t ≤ 1 if their initial conditions are sufficient
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close, so replacing the full flow map by the Poincaré map does not lead to any
essential loss of qualitative information.

Fixed points of the Poincaré map correspond to periodic solutions of the original
system, although their minimal period need not be one; for example any solution
of the original system with period 1/n where n ∈ N is a fixed point of the Poincaré
map, as is any equilibrium solution with f(x̄, t) = 0.

Example 1.26. Consider the forced, damped pendulum with non-dimensionalized
equation

xtt + δxt + sinx = γ cosωt

where γ, δ, and ω are parameters, measuring the strength of the damping, the
strength of the forcing, and the (angular) frequency of the forcing, respectively. Or
a parametrically forced oscillator (such as a swing)

xtt + (1 + γ cosωt) sinx = 0.

Here, the Poincaré map Φ : T× R→ T× R is defined by

Φ : (x(0), xt(0)) 7→ (x(T ), xt(T )) , T =
2π

ω
.

Floquet theory is concerned with such time-periodic ODEs, including the stability
of their time-periodic solutions, which is equivalent to the stability of fixed points
of the Poincaré map.

1.7. References

For introductory discussions of the theory of ODEs see [1, 9]. Detailed accounts
of the mathematical theory are given in [2, 8]. A general introduction to nonlinear
dynamical systems, with an emphasis on applications, is in [10]. An introduction
to bifurcation theory in continuous and discrete dynamical systems is [6]. For a
rigorous but accessible introduction to chaos in discrete dynamical systems, see [3].
A classic book on nonlinear dynamical systems is [7].





CHAPTER 2

One Dimensional Dynamical Systems

We begin by analyzing some dynamical systems with one-dimensional phase
spaces, and in particular their bifurcations. All equations in this Chapter are scalar
equations. We mainly consider continuous dynamical systems on the real line R,
but we also consider continuous systems on the circle T, as well as some discrete
systems.

The restriction to one-dimensional systems is not as severe as it may sound.
One-dimensional systems may provide a full model of some systems, but they also
arise from higher-dimensional (even infinite-dimensional) systems in circumstances
where only one degree of freedom determines their dynamics. Haken used the term
‘slaving’ to describe how the dynamics of one set of modes may follow the dynamics
of some other, smaller, set of modes, in which case the behavior of the smaller set
of modes determines the essential dynamics of the full system. For example, one-
dimensional equations for the bifurcation of equilibria at a simple eigenvalue may
be derived by means of the Lyapunov-Schmidt reduction.

2.1. Exponential growth and decay

I said that population, when
unchecked, increased in a
geometrical ratio; and subsistence
for man in an arithmetical ratio.

Thomas Malthus, 1798

The simplest ODE is the linear scalar equation

(2.1) xt = µx.

Its solution with initial condition x(0) = x0 is

x(t) = x0e
µt

where the parameter µ is a constant. If µ > 0, (2.1) describes exponential growth,
and we refer to µ as the growth constant. The solution increases by a factor of e
over time Te = 1/µ, and has doubling time

T =
log 2

µ
.

If µ = −λ < 0, then (2.1) describes exponential decay, and we refer to λ = |µ| as
the decay constant. The solution decreases by a factor of e over time Te = 1/λ,
and has half-life

T =
log 2

λ
.

17
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Note that µ or λ have the dimension of inverse time, as follows from equating the
dimensions of the left and right hand sides of (2.1). The dimension of x is irrelevant
since both sides are linear in x.

Example 2.1. Malthus (1798) contrasted the potential exponential growth of
the human population with the algebraic growth of resources needed to sustain it.
An exponential growth law is too simplistic to accurately describe human popula-
tions. Nevertheless, after an initial lag period and before the limitation of nutrients,
space, or other resources slows the growth, the population x(t) of bacteria grown
in a laboratory is well-described this law. The population doubles over the cell-
division time. For example, E. Coli grown in glucose has a cell-division time of
approximately 17 mins, corresponding to µ ≈ 0.04 mins−1.

Example 2.2. Radioactive decay is well-described by (2.1) with µ < 0, where
x(t) is the molar amount of radioactive isotope remaining after time t. For ex-
ample, C14 used in radioactive dating has a half-life of approximately 5730 years,
corresponding to µ ≈ −1.2× 10−4 years−1.

If x0 ≥ 0, then x(t) ≥ 0 for all t ∈ R, so this equation is consistent with mod-
eling problems such as population growth or radioactive decay where the solution
should remain non-negative. We assume also that the population or number of
radioactive atoms are sufficiently large that we can describe them by a continuous
variable.

The phase line of (2.1) consists of a globally asymptotically stable equilibrium
x = 0 if µ < 0, and an unstable equilibrium x = 0 if µ > 0. If µ = 0, then every
point on the phase line is an equilibrium.

2.2. The logistic equation

The simplest model of population growth of a biological species that takes
account of the effect of limited resources is the logistic equation

(2.2) xt = µx
(

1− x

K

)
.

Here, x(t) is the population at time t, the constant K > 0 is called the carrying
capacity of the system, and µ > 0 is the maximum growth rate, which occurs at
populations that are much smaller than the carrying capacity. For 0 < x < K, the
population increases, while for x > K, the population decreases.

We can remove the parameters µ, K by introducing dimensionless variables

t̃ = µt, x̃(t̃) =
x(t)

K
.

Since µ > 0, this transformation preserves the time-direction. The non-dimensionalized
equation is x̃t̃ = x̃ (1− x̃) or, on dropping the tildes,

xt = x(1− x).

The solution of this ODE with initial condition x(0) = x0 is

x(t) =
x0e

t

1− x0 + x0et
.

The phase line consists of an unstable equilibrium at x = 0 and a stable equilibrium
at x = 1. For any initial data with x0 > 0, the solution satisfies x(t)→ 1 as t→∞,
meaning that the population approaches the carrying capacity.
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2.3. The phase line

Consider a scalar ODE

(2.3) xt = f(x)

where f : R→ R is a smooth function.
To sketch the phase line of this system one just has to examine the sign of f .

Points where f(x) = 0 are equilibria. In intervals where f(x) > 0, solutions are
increasing, and trajectories move to the right. In intervals where f(x) < 0, solutions
are decreasing and trajectories move to the left. This gives a complete picture of
the dynamics, consisting monotonically increasing or decreasing trajectories that
approach equilibria, or go off to infinity.

The linearization of (2.3) at an equilibrium x̄ is

xt = ax, a = f ′(x̄).

The equilibrium is asymptotically unstable if f ′(x̄) < 0 and unstable if f ′(x̄) > 0.
If f ′(x̄) = 0, meaning that the fixed point is not hyperbolic, there is no immediate
conclusion about the stability of x̄, although one can determine its stability by
looking at the behavior of the sign of f near the equilibrium.

Example 2.3. The ODE

xt = x2

with f(x) = x2 has the unique equilibrium x = 0, but f ′(0) = 0. Solutions with
x(0) < 0 approach the equilibrium as t → ∞, while solutions with x(0) > 0 leave
it (and go off to ∞ in finite time). Such a equilibrium with one-sided stability is
sometimes said to be semi-stable.

Example 2.4. For the ODE xt = −x3, the equilibrium x = 0 is asymptotically
stable, while for xt = x3 it is unstable, even though f ′(0) = 0 in both cases. Note,
however, that perturbations from the equilibrium grow or decay algebraically in
time, not exponentially as in the case of a hyperbolic equilibrium.

2.4. Bifurcation theory

And thirdly, the code is more what
you’d call “guidelines” than actual
rules.

Barbossa

Like the pirate code, the notion of a bifurcation is more of a guideline than an
actual rule. In general, it refers to a qualitative change in the behavior of a dynam-
ical system as some parameter on which the system depends varies continuously.

Consider a scalar ODE

(2.4) xt = f(x;µ)

depending on a single parameter µ ∈ R where f is a smooth function. The qual-
itative dynamical behavior of a one-dimensional continuous dynamical system is
determined by its equilibria and their stability, so all bifurcations are associated
with bifurcations of equilibria. One possible definition (which does not refer di-
rectly to the stability of the equilibria) is as follows.
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Definition 2.5. A point (x0, µ0) is a bifurcation point of equilibria for (2.4)
if the number of solutions of the equation f(x;µ) = 0 for x in every neighborhood
of (x0, µ0) is not a constant independent of µ.

The three most important one-dimensional equilibrium bifurcations are de-
scribed locally by the following ODEs:

xt = µ− x2, saddle-node

xt = µx− x2, transcritical

xt = µx− x3, pitchfork.

(2.5)

We will study each of these in more detail below.

2.5. Saddle-node bifurcation

Consider the ODE

(2.6) xt = µ+ x2.

Equations xt = ±µ ± x2 with other choices of signs can be transformed into (2.6)
by a suitable change in the signs of x and µ, although the transformation µ 7→ −µ
changes increasing µ to decreasing µ.

The ODE (2.6) has two equilibria

x = ±
√
−µ

if µ < 0, one equilibrium x = 0 if µ = 0, and no equilibria if µ > 0. For the function
f(x;µ) = µ+ x2, we have

∂f

∂x
(±
√
−µ;µ) = ±2

√
−µ.

Thus, if µ < 0, the equilibrium
√
−µ is unstable and the equilibrium −

√
−µ is

stable. If µ = 0, then the ODE is xt = x2, and x = 0 is a non-hyperbolic, semi-
stable equilibrium.

This bifurcation is called a saddle-node bifurcation. In it, a pair of hyperbolic
equilibria, one stable and one unstable, coalesce at the bifurcation point, annihilate
each other and disappear.1 We refer to this bifurcation as a subcritical saddle-node
bifurcation, since the equilibria exist for values of µ above the bifurcation value 0.
With the opposite sign xt = µ− x2, the equilibria appear at the bifurcation point
(x, µ) = (0, 0) as µ increases through zero, and we get a supercritical saddle-node
bifurcation. A saddle-node bifurcation is the generic way in which there is a change
in the number of equilibrium solutions of a dynamical system.

The name “saddle-node” comes from the corresponding two-dimensional bi-
furcation in the phase plane, in which a saddle point and a node coalesce and
disappear, but the other dimension plays no essential role in that case and this
bifurcation is one-dimensional in nature.

1If we were to allow complex equilibria, the equilibria would remain but become imaginary.
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2.6. Transcritical bifurcation

Consider the ODE

xt = µx− x2.
This has two equilibria at x = 0 and x = µ. For f(x;µ) = µx− x2, we have

∂f

∂x
(x;µ) = µ− 2x,

∂f

∂x
(0;µ) = µ,

∂f

∂x
(µ;µ) = −µ.

Thus, the equilibrium x = 0 is stable for µ < 0 and unstable for µ > 0, while the
equilibrium x = µ is unstable for µ < 0 and stable for µ > 0. Note that although
x = 0 is asymptotically stable for µ < 0, it is not globally stable: it is unstable to
negative perturbations of magnitude greater than µ, which can be small near the
bifurcation point.

This transcritical bifurcation arises in systems where there is some basic “triv-
ial” solution branch, corresponding here to x = 0, that exists for all values of the
parameter µ. (This differs from the case of a saddle-node bifurcation, where the
solution branches exists locally on only one side of the bifurcation point.). There
is a second solution branch x = µ that crosses the first one at the bifurcation point
(x, µ) = (0, 0). When the branches cross one solution goes from stable to unstable
while the other goes from stable to unstable. This phenomenon is referred to as an
“exchange of stability.”

2.7. Pitchfork bifurcation

Consider the ODE

xt = µx− x3.
Note that this ODE is invariant under the reflectional symmetry x 7→ −x. It
often describes systems with this kind of symmetry e.g. systems where there is no
distinction between left and right.

The system has one globally asymptotically stable equilibrium x = 0 if µ ≤ 0,
and three equilibria x = 0, x = ±√µ if µ is positive. The equilibria ±√µ are stable
and the equilibrium x = 0 is unstable for µ > 0. Thus the stable equilibrium 0
looses stability at the bifurcation point, and two new stable equilibria appear. The
resulting pitchfork-shape bifurcation diagram gives this bifurcation its name.

This pitchfork bifurcation, in which a stable solution branch bifurcates into
two new stable branches as the parameter µ is increased, is called a supercritical
bifurcation. Because the ODE is symmetric under x 7→ −x, we cannot normalize
all the signs in the ODE without changing the sign of t, which reverses the stability
of equilibria.

Up to changes in the signs of x and µ, the other distinct possibility is the
subcritical pitchfork bifurcation, described by

xt = µx+ x3.

In this case, we have three equilibria x = 0 (stable), x = ±
√
−µ (unstable) for

µ < 0, and one unstable equilibrium x = 0 for µ > 0.
A supercritical pitchfork bifurcation leads to a “soft” loss of stability, in which

the system can go to nearby stable equilibria x = ±√µ when the equilibrium x = 0
loses stability as µ passes through zero. On the other hand, a subcritical pitchfork
bifurcation leads to a “hard” lose of stability, in which there are no nearby equilibria
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and the system goes to some far-off dynamics (or perhaps to infinity) when the
equilibrium x = 0 loses stability.

Example 2.6. The ODE

xt = µx+ x3 − x5

has a subcritical pitchfork bifurcation at (x, µ) = (0, 0). When the solution x = 0
loses stability as µ passes through zero, the system can jump to one of the distant
stable equilibria with

x2 =
1

2

(
1 +

√
1 + 4µ

)
,

corresponding to x = ±1 at µ = 0.

2.8. The implicit function theorem

The above bifurcation equations for equilibria arise as normal forms from more
general bifurcation equations, and they may be derived by a suitable Taylor expan-
sion.

Consider equilibrium solutions of (2.4) that satisfy

(2.7) f(x;µ) = 0

where f : R × R → R is a smooth function. Suppose that x0 is an equilibrium
solution at µ0, meaning that

f(x0;µ0) = 0.

Let us look for equilibria that are close to x0 when µ is close to µ0. Writing

x = x0 + x1 + . . . , µ = µ0 + µ1

where x1, µ1 are small, and Taylor expanding (2.7) up to linear terms, we get that

∂f

∂x
(x0;µ0)x1 +

∂f

∂µ
(x0;µ0)µ1 + · · · = 0

where the dots denote higher-order terms (e.g. quadratic terms). Hence, if

∂f

∂x
(x0;µ0) 6= 0

we expect to be able to solve (2.7) uniquely for x when (x, µ) is sufficiently close to
(x0, µ0), with

(2.8) x1 = cµ1 + . . . , c = −
[
∂f/∂µ(x0;µ0)

∂f/∂x(x0;µ0)

]
.

This is in fact true, as stated in the following fundamental result, which is the scalar
version of the implicit function theorem.

Theorem 2.7. Suppose that f : R× R→ R is a C1-function and

f(x0;µ0) = 0,
∂f

∂x
(x0;µ0) 6= 0.

Then there exist δ, ε > 0 and a C1 function

x̄ : (µ0 − ε, µ0 + ε)→ R
such that x = x̄(µ) is the unique solution of

f(x;µ) = 0

with |x− x0| < δ and |µ− µ0| < ε.
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By differentiating this equation

f(x̄(µ);µ) = 0

with respect to µ, setting µ = µ0, and solving for dx̄/dµ, we get that

dx̄

dµ
(µ0) = − ∂f/∂µ

∂f/∂x

∣∣∣∣
x=x0,µ=µ0

in agreement with (2.8).
For the purposes of bifurcation theory, the most important conclusion from the

implicit function theorem is the following:

Corollary 2.8. If f : R×R→ R is a C1-function, then a necessary condition
for a solution (x0, µ0) of (2.7) to be a bifurcation point of equilibria is that

(2.9)
∂f

∂x
(x0;µ0) = 0.

Another way to state this result is that hyperbolic equilibria are stable under
small variations of the system, and a local bifurcation of equilibria can occur only
at a non-hyperbolic equilibrium.

While an equilibrium bifurcation is typical at points where (2.9) holds, there
are in exceptional, degenerate cases in which no bifurcation occurs. Thus, on its
own, (2.9) is a necessary but not sufficient condition for the bifurcation of equilibria.

Example 2.9. The ODE

xt = µ− x3

with f(x;µ) = µ− x3 has a unique branch x = (µ)1/3 of globally stable equilibria.
No bifurcation of equilibria occurs at (0, 0) even though

∂f

∂x
(0; 0) = 0.

Note, however, that the equilibrium branch is not a C1-function of µ at µ = 0.

Example 2.10. The ODE

xt = (µ− x)2

with f(x;µ) = (x−µ)2 has a unique branch x = µ of non-hyperbolic equilibria, all
of which are semi-stable. There are no equilibrium bifurcations, but

∂f

∂x
(µ;µ) = 0

for all values of µ.

There is a close connection between the loss of stability of equilibria of (2.4)
and their bifurcation. If x = x̄(µ) is a branch of equilibria, then the equilibria are
stable if

∂f

∂x
(x̄(µ);µ) < 0

and unstable if
∂f

∂x
(x̄(µ);µ) > 0.

It follows that if the equilibria lose stability at µ = µ0, then ∂f/∂x(x̄(µ);µ) changes
sign at µ = µ0 so (2.9) holds at that point. Thus, the loss of stability of a branch of
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equilibria due to the passage of an eigenvalue of the linearized system through zero
is typically associated with the appearance or disappearance of other equilibria.2

When (2.9) holds, we have to look at the higher-order terms in the Taylor
expansion of f(x;µ) to determine what type of bifurcation (if any) actually occurs.
We can always transfer a bifurcation point at (x0, µ0) to (0, 0) by the change of
variables x 7→ x− x0, µ 7→ µ−µ0. Moreover, if x = x̄(µ) is a solution branch, then
x 7→ x− x̄(µ) maps the branch to x = 0.

Let us illustrate the idea with the simplest example of a saddle-node bifurcation.
Suppose that

f(0, 0) = 0,
∂f

∂x
(0, 0) = 0

so that (0, 0) is a possible bifurcation point. Further suppose that

∂f

∂µ
(0; 0) = a 6= 0,

∂2f

∂2x
(0; 0) = b 6= 0.

Then Taylor expanding f(x;µ) up to the leading-order nonzero terms in x, µ we
get that

f(x;µ) = aµ+
1

2
bx2 + . . .

Thus, neglecting the higher-order terms,3 we may approximate the ODE (2.4) near
the origin by

xt = aµ+
1

2
bx2.

By rescaling x and µ, we may put this ODE in the standard normal form for a
saddle-node bifurcation. The signs of a and b determine whether the bifurcation is
subcritical or supercritical and which branches are stable or unstable. For example,
if a, b > 0, we get the same bifurcation diagram and local dynamics as for (2.6).

As in the case of the implicit function theorem, this formal argument does
not provide a rigorous proof that a saddle-node bifurcation occurs, and one has to
justify the neglect of the higher-order terms. In particular, it may not be obvious
which terms can be safely neglected and which terms must be retained. We will
not give any further details here, but simply summarize the resulting conclusions
in the following theorem.

Theorem 2.11. Suppose that f : R×R→ R is a smooth function and (x0, µ0)
satisfy the necessary bifurcation conditions

f(x0, µ0) = 0,
∂f

∂x
(x0;µ0) = 0.

• If
∂f

∂µ
(x0;µ0) 6= 0,

∂2f

∂2x
(x0;µ0) 6= 0

then a saddle-node bifurcation occurs at (x0, µ0)

2In higher-dimensional systems, an equilibrium may lose stability by the passage of a complex

conjugate pair of eigenvalues across the real axis. This does not lead to an equilibrium bifurcation,
since the eigenvalues are always nonzero. Instead, as we will discuss later on, it is typically

associated with the appearance or disappearance of periodic solutions in a Hopf bifurcation.
3For example, µx is small compared with µ and x3 is small compared with x2 since x is

small, and µ2 is small compared with µ since µ is small.
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• If

∂f

∂µ
(x0;µ0) = 0,

∂2f

∂x∂µ
(x0;µ0) 6= 0,

∂2f

∂2x
(x0;µ0) 6= 0

then a transcritical bifurcation occurs at (x0, µ0).
• If

∂f

∂µ
(x0;µ0) = 0,

∂2f

∂x2
(x0;µ0) = 0,

∂2f

∂x∂µ
(x0;µ0) 6= 0,

∂3f

∂x3
(x0;µ0) 6= 0

then a pitchfork bifurcation occurs at (x0, µ0)

The conditions in the theorem are rather natural; they state that the leading
nonzero terms in the Taylor expansion of f agree with the terms in the corre-
sponding normal form. Note that a saddle-node bifurcation is generic, in the sense
that other derivatives of f have to vanish at the bifurcation point if a saddle-node
bifurcation is not to occur.

In each case of Theorem 2.11, one can find local coordinates near (x0, µ0) that
put the equation f(x;µ) = 0 in the normal form for the corresponding bifurcation
in a sufficiently small neighborhood of the bifurcation point. In particular, the
bifurcation diagrams look locally like the ones considered above. The signs of the
nonzero terms determine the stability of the various branches and whether or not
the bifurcation is subcritical or supercritical.

Example 2.12. Bifurcation points for the ODE

xt = µx− ex

must satisfy
µx− ex = 0, µ− ex = 0,

which implies that (x, µ) = (1, e). This can also be seen by plotting the graphs of
y = µx and y = ex: the line y = µx is tangent to the curve y = ex at (x, y) = (1, e)
when µ = e. Writing

x = 1 + x1 + . . . , µ = e+ µ1 + . . .

we find that the Taylor approximation of the ODE near the bifurcation point is

x1t = µ1 −
e

2
x21 + . . . .

Thus, there a supercritical saddle node bifurcation at (x, µ) = (1, e). For µ > e,
the equilibrium solutions are given by

x = 1±
√

2

e
(µ− e) + . . . .

The solution with x > 1 is stable, while the solution with x < 1 is unstable.

Example 2.13. The ODE

(2.10) xt = µ2 + µx− x3

with f(x;µ) = µ2+µx−x3 has a supercritical pitchfork bifurcation at (x, µ) = (0, 0),
since it satisfies the conditions of the theorem. The quadratic term µ2 does not
affect the type of bifurcation. We will return to this equation in Example 2.14
below.



26 2. ONE DIMENSIONAL DYNAMICAL SYSTEMS

2.9. Buckling of a rod

Consider two rigid rods of length L connected by a torsional spring with spring
constant k and subject to a compressive force of strength λ. If x is the angle of the
rods to the horizontal, then the potential energy of the system is

V (x) =
1

2
kx2 + 2λL (cosx− 1) .

Here kx2/2 is the energy required to compress the spring by an angle 2x and
2λL (1− cosx) is the work done on the system by the external force. Equilibrium
solutions satisfy V ′(x) = 0 or

x− µ sinx = 0, µ =
2λL

k
where µ is a dimensionless force parameter.

The equation has the trivial, unbuckled, solution branch x = 0. Writing

f(x;µ) = −V ′(x) = µ sinx− x,
the necessary condition for an equilibrium bifurcation to occur on this branch is

∂f

∂x
(0, µ) = µ− 1 = 0

which occurs at µ = 1. The Taylor expansion of f(x;µ) about (0, 1) is

f(x;µ) = (µ− 1)x− 1

6
x3 + . . .

Thus, there is a supercritical pitchfork bifurcation at (x, µ) = (0, 1). The bifurcating
equilbria near this point are given for 0 < µ− 1� 1 by

x =
√

6(µ− 1) + . . . .

This behavior can also be seen by sketching the graphs of y = x and y = µ sinx.
Note that the potential energy V goes from a single well to a double well as µ passes
through 1.

This one-dimensional equation provides a simple model for the buckling of an
elastic beam, one of the first bifurcation problems which was originally studied by
Euler (1757).

2.10. Imperfect bifurcations

According to Theorem 2.11, a saddle-node bifurcation is the generic bifurcation
of equilibria for a one-dimensional system, and additional conditions are required
at a bifurcation point to obtain a transcritical or pitchfork bifurcation. As a result,
these latter bifurcations are not structurally stable and they can be destroyed by
arbitrarily small perturbations that break the conditions under which they occur

First, let us consider a perturbed, or imperfect, pitchfork bifurcation that is
described by

(2.11) xt = λ+ µx− x3

where (λ, µ) ∈ R2 are real parameters. Note that if λ = 0, this system has the
reflectional symmetry x 7→ −x and a pirchfork bifurcation, but this symmetry is
broken when λ 6= 0.

The cubic polynomial p(x) = λ+ µx− x3 has repeated roots if

λ+ µx− x3 = 0, µ− 3x2 = 0
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which occurs if µ = 3x2 and λ = −2x3 or

4µ3 = 27λ2.

As can be seen by sketching the graph of p, there are three real roots if µ > 0 and

27λ2 < 4µ3,

and one real root if 27λ2 > 4µ3. The surface of the roots as a function of (λ, µ)
forms a cusp catastrophe.

If λ 6= 0, the pitchfork bifurcation is perturbed to a stable branch that exists for
all values of µ without any bifurcations and a supercritical saddle-node bifurcation
in which the remaining stable and unstable branches appear.

Example 2.14. The ODE (2.10) corresponds to (2.11) with λ = µ2. As this
parabola passes through the origin in the (λ, µ)-plane, we get a supercritical pitch-
fork bifurcation at (x, µ) = (0, 0). We then get a further saddle-node bifurcation at
(x, µ) = (−2/9, 4/27) when the parabola λ = µ2 crosses the curve 4µ3 = 27λ2.

Second, consider an imperfect transcritical bifurcation described by

(2.12) xt = λ+ µx− x2

where (λ, µ) ∈ R2 are real parameters. Note that if λ = 0, this system has the
equilibrium solution x = 0, but if λ < 0 there is no solution branch that is defined
for all values of µ.

The equilibrium solutions of (2.12) are

x =
1

2

(
µ±

√
µ2 + 4λ

)
,

which are real provided that µ2 + 4λ ≥ 0. If λ < 0, the transcritical bifurcation
for λ = 0 is perturbed into two saddle-node bifurcations at µ = ±2

√
−λ; while if

λ > 0, we get two non-intersecting solution branches, one stable and one unstable,
and no bifurcations occur as µ is varied.

2.11. Dynamical systems on the circle

Problems in which the dependent variable x(t) ∈ T is an angle, such as the
phase of an oscillation, lead to dynamical systems on the circle.

As an example, consider a forced, highly damped pendulum. The equation of
motion of a linearly damped pendulum of mass m and length ` with angle x(t) to
the vertical acted on by a constant angular force F is

m`xtt + δxt +mg sinx = F

where δ is a positive damping coefficient and g is the acceleration due to gravity.
The damping coefficient δ has the dimension of Force × Time. For motions

in which the damping and gravitational forces are important, an appropriate time
scale is therefore δ/mg, and we introduce a dimensionless time variable

t̃ =
mg

δ
t,

d

dt
=
mg

δ

d

dt̃
.

The angle x is already dimensionless, so we get the non-dimensionalized equation

εxt̃t̃ + xt̃ + sinx = µ
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where the dimensionless parameters ε, µ are given by

ε =
m2g`

δ2
, µ =

F

mg
.

For highly damped motions, we neglect the term εxt̃t̃ and set ε = 0. Note
that one has to be careful with such an approximation: the higher-order derivative
is a singular perturbation, and it may have a significant effect even though its
coefficient is small. For example, the second order ODE with ε > 0 requires two
initial conditions, whereas the first order ODE for ε = 0 requires only one. Thus for
the reduced equation with ε = 0 we can specify the initial location of the pendulum,
but we cannot specify its initial velocity, which is determined by the ODE. We will
return to such questions in more detail later on, but for now we simply set ε = 0.

Dropping the tilde on t̃ we then get the ODE

xt = µ− sinx,

where µ is a nondimensionalized force parameter. If µ = 0, this system has two
equilibria: a stable one at x = 0 corresponding to the pendulum hanging down, and
an unstable one at µ = π corresponding to the pendulum balanced exactly above
its fulcrum. As µ increases, these equilibria move toward each other (the stable
equilibrium is ‘lifted up’ by the external force), and when µ = 1 they coalesce and
disappear in a saddle-node bifurcation at (x, µ) = (π/2, 1). For µ > 1, there are no
equilibria. The external force is sufficiently strong to overcome the damping and
the pendulum rotates continuously about its fulcrum.

2.12. Discrete dynamical systems

A one-dimensional discrete dynamical system

(2.13) xn+1 = f(xn)

is given by iterating a map f , which we assume is smooth. Its equilibria are fixed
points x̄ of f such that

x̄ = f(x̄).

The orbits, or trajectories, of (2.13) consist of a sequence of points xn rather than a
curve x(t) as in the case of an ODE. As a result, there are no topological restrictions
on trajectories of a discrete dynamical systems, and unlike the continuous case there
is no simple, general way to determine their phase portrait. In fact, their behavior
may be extremely complex, as the logistic map discussed in Section 2.15 illustrates.

There is a useful graphical way to sketch trajectories of (2.13): Draw the graphs
y = f(x), y = x and iterate points vertically to y = f(x), which updates the state,
and horizontally to y = x, which updates x-value.

The simplest discrete dynamical system is the linear scalar equation

(2.14) xn+1 = µxn.

The solution is
xn = µnx0.

If µ 6= 1, the origin x = 0 is the unique fixed point of the system. If |µ| < 1, this
fixed point is globally asymptotically stable, while if |µ| > 1 it is unstable. Note
that if µ > 0, successive iterates approach or leave the origin monotonically, while
if µ < 0, they alternate on either side of the origin. If µ = 1, then every point is a
fixed point of (2.14), while if µ = −1, then every point has period two. The map is
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invertible if µ 6= 0 when orbits are defined backward and forward in time. If µ = 0,
every point is mapped to the origin after one iteration, and orbits are not defined
backward in time.

Example 2.15. The exponential growth of a population of bacteria that dou-
bles every generation is described by (2.14) with µ = 2 where xn denotes the
population of the nth generation.

The linearization of (2.13) about a fixed point x̄ is

xn+1 = axn, a = f ′(x̄)

where the prime denotes an x-derivative. We say that the fixed point is hyperbolic
if |f ′(x̄)| 6= 1, and in that case it is stable if

|f ′(x̄)| < 1

and unstable if

|f ′(x̄)| > 1.

As for continuous dynamical systems, the stability of non-hyperbolic equilibria
(with f ′(x̄) = ±1) cannot be determined solely from their linearization.

After fixed points, the next simplest type of solution of (2.13) are periodic
solutions. A state x1 or x2 has period two if the system has an orbit of the form
{x1, x2} where

x2 = f(x1), x1 = f(x2).

The system oscillates back and forth between the two states x1, x2.
We can express periodic orbits as fixed points of a suitable map. We write the

composition of f with itself as f2 = f ◦ f , meaning that

f2(x) = f (f(x)) .

Note that this is not the same as the square of f — for example sin2(x) = sin(sinx)
not (sinx)2 — but our use of the notation should be clear from the context. If
{x1, x2} is a period-two orbit of f , then x1, x2 are fixed points of f2 since

f2(x1) = f (f(x1)) = f(x2) = x1.

Conversely, if x1 is a fixed point of f2 and x2 = f(x1), then {x1, x2} is a period-two
orbit of (2.13).

More generally, for any N ∈ N, a period-N orbit of (2.13) consists of points
{x1, x2, x3, . . . , xN} such that

x2 = f(x1), x3 = f(x2), . . . , x1 = f(xN ).

In that case, each xi is an N -periodic solution of (2.13) and is a fixed point of fN ,
the N -fold composition of f with itself. If a point has period N , then it also has
period equal to every positive integer multiple of N . For example, a fixed point
has period equal to every positive integer, while a point with period two has period
equal to every even positive integer.If x1 is a periodic solution of (2.13), the minimal
period of x1 is the smallest positive integer N such that fN (x1) = x1. Thus, for
example, the fixed points of f4 include all fixed points of f and all two-periodic
points as well as all points whose minimal period is four.
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2.13. Bifurcations of fixed points

Next, we consider some bifurcations of a one-dimensional discrete dynamical
system

(2.15) xn+1 = f(xn;µ)

depending on a parameter µ ∈ R. As usual, we assume that f is a smooth func-
tion. In addition to local bifurcations of fixed points that are entirely analogous to
bifurcations of equilibria in continuous dynamical systems, these systems possess
a period-doubling, or flip, bifurcation that has no continuous analog. They also
possess other, more complex, bifurcations. First, we consider bifurcations of fixed
points.

If x0 is a fixed point of (2.15) at µ = µ0, then by the implicit function theorem
the fixed-point equation

f(x;µ)− x = 0

is uniquely solvable for x close to x0 and µ close to µ0 provided that

∂f

∂x
(x0;µ0)− 1 6= 0.

Thus, necessary conditions for (x0;µ0) to be a bifurcation point of fixed points are
that

f(x0;µ0) = x0,
∂f

∂x
(x0;µ0) = 1.

The following typical bifurcations at (x, µ) = (0, 0) are entirely analogous to the
ones in (2.5):

xn+1 = µ+ xn − x2n, saddle-node

xn+1 = (1 + µ)xn − x2n, transcritical

xn+1 = (1 + µ)xn − x3n, pitchfork.

For completeness, we state the theorem for fixed-point bifurcations, in which
the equation f(x;µ)− x = 0 replaces the equation f(x;µ) = 0 for equilibria.

Theorem 2.16. Suppose that f : R×R→ R is a smooth function and (x0, µ0)
satisfies the necessary condition for the bifurcation of fixed points:

f(x0, µ0) = x0,
∂f

∂x
(x0;µ0) = 1.

• If

∂f

∂µ
(x0;µ0) 6= 0,

∂2f

∂2x
(x0;µ0) 6= 0

then a saddle-node bifurcation occurs at (x0, µ0)
• If

∂f

∂µ
(x0;µ0) = 0,

∂2f

∂x∂µ
(x0;µ0) 6= 0,

∂2f

∂2x
(x0;µ0) 6= 0

then a transcritical bifurcation occurs at (x0, µ0).
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• If

∂f

∂µ
(x0;µ0) = 0,

∂2f

∂x2
(x0;µ0) = 0,

∂2f

∂x∂µ
(x0;µ0) 6= 0,

∂3f

∂x3
(x0;µ0) 6= 0

then a pitchfork bifurcation occurs at (x0, µ0)

2.14. The period-doubling bifurcation

Suppose that (2.15) has a branch of fixed points x = x̄(µ) such that

x̄(µ) = f (x̄(µ);µ) .

The fixed point can lose stability in two ways: (a) the eigenvalue fx (x̄(µ);µ) passes
through 1; (b) the eigenvalue fx (x̄(µ);µ) passes through −1. In the first case,
we typically get a bifurcation of fixed points, but in the second case the implicit
function theorem implies that no such bifurcation occurs. Instead, the loss of
stability is typically associated with the appearance or disappearance of period two
orbits near the fixed point.

To illustrate this, we consider the following system

xn+1 = −(1 + µ)xn + x3n

with
f(x;µ) = −(1 + µ)x+ x3

The fixed points satisfy x = −(1 + µ)x+ x3, whose solutions are x = 0 and

(2.16) x = ±
√

2 + µ

for µ > −2. We have
∂f

∂x
(0;µ) = −(1 + µ),

so the fixed point x = 0 is stable if −2 < µ < 0 and unstable if µ > 0 or µ < −2.
The eigenvalue fx (0;µ) passes through 1 at µ = −2, and x = 0 gains stability

at a supercritical pitchfork bifurcation in which the two new fixed points (2.16)
appear. Note that for µ > −2

∂f

∂x
(±
√

2 + µ;µ) = 5 + 2µ > 1

so these new fixed points are unstable.
The eigenvalue fx (0;µ) passes through −1 at µ = 0, and x = 0 loses stability

at that point. As follows from the implicit function theorem, there is no bifurcation
of fixed points: the only other branches of fixed points are (2.16), equal to x = ±

√
2

at µ = 0, which are far away from x = 0. Instead, we claim that a new orbit of
period two appears at the bifurcation point.

To show this, we analyze the fixed points of the two-fold composition of f

f2(x;µ) = −(1 + µ)
[
−(1 + µ)x+ x3

]
+
[
−(1 + µ)x+ x3

]3
= (1 + µ)2x− (1 + µ)(2 + 2µ+ µ2)x3 + 3(1 + µ)2x5 − 3(1 + µ)x7 + x9.

The period-doubling bifurcation for f corresponds to a pitchfork bifurcation for f2.
Near the bifurcation point (x, µ) = (0, 0), we may approximate f2 by

f2(x;µ) = (1 + 2µ)x− 2x3 + . . . .
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The fixed points of f2 are therefore given approximately by

x = ±√µ,
and they are stable. The corresponding stable period-two orbit is {√µ,−√µ}.

Note that if the original equation was

xn+1 = −(1 + µ)xn + x2n,

with a quadratically nonlinear term instead of a cubically nonlinear term, then we
would still get a pitchfork bifurcation in f2 at (x, µ) = (0, 0).

2.15. The logistic map

The discrete logistic equation is

(2.17) xn+1 = µxn (1− xn) ,

which is (2.13) with
f(x;µ) = µx(1− x).

We can interpret (2.17) as a model of population growth in which xn is the popula-
tion of generation n. In general, positive values of xn may map to negative values
of xn+1, which would not make sense when using the logistic map as a population
model. We will restrict attention to 1 ≤ µ ≤ 4, in which case f(·;µ) maps points
in [0, 1] into [0, 1]. Then the population xn+1 is µ(1− xn) times the population xn
of the previous generation. If 0 ≤ xn < 1− 1/µ, the population increases, whereas
if If 1 − 1/µ < xn ≤ 1, the population decreases. Superficially, (2.17) may appear
similar to the logistic ODE (2.2), but its qualitative properties are very different.
In particular, note that the quadratic logistic map is not monotone or invertible on
[0, 1] and is typically two-to-one.

Equation (2.17) has two branches of fixed points,

x = 0, x = 1− 1

µ
.

We have
∂f

∂x
(x, µ) = µ(1− 2x)

so that
∂f

∂x
(0, µ) = µ,

∂f

∂x

(
1− 1

µ
, µ

)
= 2− µ.

Thus, the fixed point x = 0 is unstable for µ > 1. The fixed point x = 1 − 1/µ
is stable for 1 < µ < 3 and unstable µ > 3. There is a transcritical bifurcation
of fixed points at (x, µ) = (0, 1) where these two branches exchange stability. The
fixed point x = 1 − 1/µ loses stability at µ = 3 in a supercritical period doubling
bifurcation as fx = 2− µ passes through −1.

We will not carry out a further analysis of (2.17) here. We note, however, that
there is a sequence of supercritical period doubling bifurcations corresponding to
the appearance of stable periodic orbits of order 2, 4, 8, . . . , 2k, . . . at µ = µk. These
bifurcation points have a finite limit

µ∞ = lim
k→∞

µk ≈ 3.570.

The bifurcation values approach µ∞ geometrically, with

lim
k→∞

(
µk − µk−1
µk+1 − µk

)
= 4.6692 . . .



2.16. REFERENCES 33

Figure 1. A bifurcation diagram for the logistic map where r = µ.
(From Wikipedia.)

where 4.6692 . . . is a universal Feigenbaum constant. For µ∞ < µ ≤ 4, the logistic
map is chaotic, punctated by windows in which it has an asymptotically stable
periodic orbit of (rather remarkably) period three.

A bifurcation diagram for (2.17) is shown in Figure 1.

2.16. References

We have studied some basic examples of equilibrium bifurcations, but have not
attempted to give a general analysis, which is part of singularity or catastrophe
theory. Further introductory discussions can be found in [4, 11]. For a systematic
account, including equilibrium bifurcations in the presence of symmetry, see [5].





Bibliography

[1] V. I. Arnold, Ordinary Differential Equations, Spinger-Verlag, 1992.

[2] E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, Krieger, 1984.
[3] R. Devaney and R. L. Devaney, An Introduction to Chaotic Dynamical Systems, 2nd Ed.,

Westview Press, 2003.

[4] P. Glendinning, Stability, Instability and Chaos, Cambridge University Press, Cambridge,
1994.

[5] M. Golubitsky and D. G. Shaeffer, Singularities and Groups in Bifurcation Theory, Vol. 1,

Springer-Verlag, New York, 1985.
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