Sample Final Questions

Math 207A, Fall 2011

1. Sketch the phase plane of the ODE

$$
x_{t t}+x\left(x^{2}-1\right)^{2}=0
$$

Find the equilibria and determine their stability. Are any of the equilibria hyperbolic?
2. Find the equilibria of the system

$$
\begin{aligned}
& x_{t}=2 y \\
& y_{t}=2 x-3 x^{2}-y\left(x^{3}-x^{2}+y^{2}-\mu\right)
\end{aligned}
$$

Linearize the equations about each equilibrium and classify them. What local bifurcations occur as the parameter μ varies?
3. (a) Write the system

$$
\begin{aligned}
& x_{t}=x-y-x\left(x^{2}+y^{2}\right), \\
& y_{t}=x+y-y\left(x^{2}+y^{2}\right)
\end{aligned}
$$

in polar coordinates and sketch the phase plane. How do solutions behave at $t \rightarrow \infty$?
(b) Define a Poincaré return map $P:(0, \infty) \rightarrow(0, \infty)$ as follows: for $x>0$, $(P(x), 0)$ is the next intersection point of the trajectory starting at $(x, 0)$ with the positive x-axis. By solving the polar equations, show that

$$
P(x)=\frac{c x}{\sqrt{1+\left(c^{2}-1\right) x^{2}}}
$$

where $c=e^{2 \pi}$.
(c) Find the fixed point $\bar{x} \in(0, \infty)$ of P and determine its stability.

