
Sample Final Questions
Math 207A, Fall 2011

Brief Solutions

1. Sketch the phase plane of the ODE

xtt + x
(
x2 − 1

)2
= 0.

Find the equilibria and determine their stability. Are any of the equilibria
hyperbolic?

Solution

• This is a conservative system xtt + V ′(x) = 0 with potential

V (x) =
1

6
(x2 − 1)3.

• There are three equilibria x = 0,±1. None of them are hyperbolic.
The equilibrium x = 0 is a nondegenerate minimum of V (x) and is a
center. The equilibria x = ±1 are degenerate critical points of V (x).
All of the orbits are periodic except for two heteroclinic orbits, one in
the upper half of the (x, xt)-plane that goes from (−1, 0) to (1, 0), the
other in the lower half plane that goes from (1, 0) to (−1, 0)



2. Find the equilibria of the system

xt = 2y,

yt = 2x− 3x2 − y
(
x3 − x2 + y2 − µ

)
.

Linearize the equations about each equilibrium and classify them. What
local bifurcations occur as the parameter µ varies?

Solution

• The equilibria are
(x, y) = (0, 0), (2/3, 0).

• The equilibrium (0, 0) is a saddle for all values of µ (with eigenvalues
λ = ±1).

• The linearization at (2/3, 0) is

xt = 2y, yt = −2x+ µ′y

where

µ′ = µ+
4

27
.

The eigenvalues are

λ =
1

2

(
µ′ ±

√
(µ′)2 − 16

)
.

This is a stable node if µ′ ≤ −4, , a stable spiral if −4 < µ′ < 0, a
(linearized) center if µ′ = 0, an unstable spiral if 0 < µ′ < 4, and an
unstable node if 4 ≤ µ′.

• No local bifurcation occurs at µ′ = ±4; the equilibrium remains hyper-
bolic and a node simply turns into a spiral (the local flows are topo-
logically conjugate). There is a Hopf bifurcation at µ′ = 0 when a pair
of complex-conjugate eigenvalues crosses the imaginary axis. By the
Hopf bifurcation theorem, there is a one-parameter family of periodic
orbits near (x, y, µ′) = (2/3, 0, 0).

• Note that there are no local bifurcations at µ = 0, or µ′ = 4/27, but
there is a global homoclinic bifurcation at µ = 0.



3. (a) Write the system

xt = x− y − x
(
x2 + y2

)
,

yt = x+ y − y
(
x2 + y2

)
in polar coordinates and sketch the phase plane. How do solutions behave
at t→∞?

(b) Define a Poincaré return map P : (0,∞)→ (0,∞) as follows: for x > 0,
(P (x), 0) is the next intersection point of the trajectory starting at (x, 0)
with the positive x-axis. By solving the polar equations, show that

P (x) =
cx√

1 + (c2 − 1)x2

where c = e2π.

(c) Find the fixed point x̄ ∈ (0,∞) of P and determine its stability.

Solution

• Part (a) was in a previous problem set. The result is

rt = r − r3, θt = 1.

• (c) Since θ = t + θ0, the next intersection with the x-axis occurs after
time t = 2π. The solution of the ODE for r(t) with initial condition
r(0) = x is

r(t) =
etx√

1 + (e2t − 1)x2
.

The Poincaré map is P (x) = r(2π) which gives the result.

• The fixed point of P (x) is x = 1 and 0 < P ′(1) < 1, which means
that it is a stable fixed point. This fixed point of P corresponds to the
stable limit cycle r = 1 of the original ODE.


