Sample Final Questions
Math 207A, Fall 2011
Brief Solutions

1. Sketch the phase plane of the ODE

$$
x_{t t}+x\left(x^{2}-1\right)^{2}=0
$$

Find the equilibria and determine their stability. Are any of the equilibria hyperbolic?

Solution

- This is a conservative system $x_{t t}+V^{\prime}(x)=0$ with potential

$$
V(x)=\frac{1}{6}\left(x^{2}-1\right)^{3} .
$$

- There are three equilibria $x=0, \pm 1$. None of them are hyperbolic. The equilibrium $x=0$ is a nondegenerate minimum of $V(x)$ and is a center. The equilibria $x= \pm 1$ are degenerate critical points of $V(x)$. All of the orbits are periodic except for two heteroclinic orbits, one in the upper half of the $\left(x, x_{t}\right)$-plane that goes from $(-1,0)$ to $(1,0)$, the other in the lower half plane that goes from $(1,0)$ to $(-1,0)$

2. Find the equilibria of the system

$$
\begin{aligned}
& x_{t}=2 y, \\
& y_{t}=2 x-3 x^{2}-y\left(x^{3}-x^{2}+y^{2}-\mu\right) .
\end{aligned}
$$

Linearize the equations about each equilibrium and classify them. What local bifurcations occur as the parameter μ varies?

Solution

- The equilibria are

$$
(x, y)=(0,0), \quad(2 / 3,0)
$$

- The equilibrium $(0,0)$ is a saddle for all values of μ (with eigenvalues $\lambda= \pm 1$).
- The linearization at $(2 / 3,0)$ is

$$
x_{t}=2 y, \quad y_{t}=-2 x+\mu^{\prime} y
$$

where

$$
\mu^{\prime}=\mu+\frac{4}{27} .
$$

The eigenvalues are

$$
\lambda=\frac{1}{2}\left(\mu^{\prime} \pm \sqrt{\left(\mu^{\prime}\right)^{2}-16}\right) .
$$

This is a stable node if $\mu^{\prime} \leq-4$, a stable spiral if $-4<\mu^{\prime}<0$, a (linearized) center if $\mu^{\prime}=0$, an unstable spiral if $0<\mu^{\prime}<4$, and an unstable node if $4 \leq \mu^{\prime}$.

- No local bifurcation occurs at $\mu^{\prime}= \pm 4$; the equilibrium remains hyperbolic and a node simply turns into a spiral (the local flows are topologically conjugate). There is a Hopf bifurcation at $\mu^{\prime}=0$ when a pair of complex-conjugate eigenvalues crosses the imaginary axis. By the Hopf bifurcation theorem, there is a one-parameter family of periodic orbits near $\left(x, y, \mu^{\prime}\right)=(2 / 3,0,0)$.
- Note that there are no local bifurcations at $\mu=0$, or $\mu^{\prime}=4 / 27$, but there is a global homoclinic bifurcation at $\mu=0$.

3. (a) Write the system

$$
\begin{aligned}
& x_{t}=x-y-x\left(x^{2}+y^{2}\right), \\
& y_{t}=x+y-y\left(x^{2}+y^{2}\right)
\end{aligned}
$$

in polar coordinates and sketch the phase plane. How do solutions behave at $t \rightarrow \infty$?
(b) Define a Poincaré return map $P:(0, \infty) \rightarrow(0, \infty)$ as follows: for $x>0$, $(P(x), 0)$ is the next intersection point of the trajectory starting at $(x, 0)$ with the positive x-axis. By solving the polar equations, show that

$$
P(x)=\frac{c x}{\sqrt{1+\left(c^{2}-1\right) x^{2}}}
$$

where $c=e^{2 \pi}$.
(c) Find the fixed point $\bar{x} \in(0, \infty)$ of P and determine its stability.

Solution

- Part (a) was in a previous problem set. The result is

$$
r_{t}=r-r^{3}, \quad \theta_{t}=1
$$

- (c) Since $\theta=t+\theta_{0}$, the next intersection with the x-axis occurs after time $t=2 \pi$. The solution of the ODE for $r(t)$ with initial condition $r(0)=x$ is

$$
r(t)=\frac{e^{t} x}{\sqrt{1+\left(e^{2 t}-1\right) x^{2}}}
$$

The Poincaré map is $P(x)=r(2 \pi)$ which gives the result.

- The fixed point of $P(x)$ is $x=1$ and $0<P^{\prime}(1)<1$, which means that it is a stable fixed point. This fixed point of P corresponds to the stable limit cycle $r=1$ of the original ODE.

