PROBLEM SET 1
Math 207A, Fall 2011
Solutions

1. Write the IVP for the forced, damped pendulum

Ty + 0xy + wg sin x = 7y cos wt,

z(0) = zo, x4(0) = vy

as an IVP for an autonomous first-order system. What is the dimension of
the system?

Solution

e Introduce variables (x, v, s) where v = z;, s = t. Then

Ty =0,
vy = —6v — W sinx + v cos ws,
St — 1,

with initial conditions

z(0) = o, v(0) = vy, s(0) = 0.

Remark. Since the phase space is three-dimensional, chaotic behavior is
possible, and indeed it occurs in suitable parameter regimes.



2. Solve the scalar IVP
z; = z(logz)?, z(0) = xg

where o > 0 and 2y > 1. Find the maximal time-interval on which the
solution exists. For what values of o does the solution exist for all times?

Solution

e Separating variables, we get

/mdx:/dt

To compute the x-integral, use the substitution v = log x, which gives

1
/—du:t+C’
uOé

where C' is a constant of integration.

e If a # 1, the solution is

1
11—«

utt =t 4+ C.

The initial condition implies that

1

Czl—a

)l—a

(log zo

bl

x(t) = exp { [(1—a)t+ (logzo)' ] 1/(170‘)} .

Note that logxy > 0 since xg > 1.
e If 0 < a < 1, the solution exists for all 0 <t < oco.

e If o > 1 the solution exists only for a finite time interval 0 < ¢t < T
where 7" > 0 is given by

1

= (a —1)(log xg)—1




e If @ =1, the solution is
x(t) = exp [(log zo) expt].

The solution exist for all ¢, although it grows very rapidly (doubly
exponentially) as ¢t — oo.

Remark. Note that the solution of x; = xlog x exists globally in time even
though the right-hand side grows faster than a linear function of x, albeit
by a slowly growing logarithmic factor. Any higher power of log x, however,
leads to solutions that blow up in finite time.



3. The position z(t) € R of a particle of mass m moving in one space
dimension in a potential V' (z) satisfies

mxy = —V'(x)

where the prime denotes a derivative with respect to x. Show that the total

energy

1
§mxf + V(x) = constant
is conserved. What can you say about the time-interval of existence of solu-
tions for: (a) the attractive potential V(z) = z*; (b) the repulsive potential

V(z) = —a1?
Solution

e Using the chain rule and the ODE, we get

d |1
pr [ﬁmxf + V(J?):| = mzxy + V' (2)z,

= —x,V'(z) + V'(2)x,
=0.

Hence the total energy is constant.

o If V(z) = z* then
1

§mmf + 2* = constant,

which implies that both x, x; are bounded functions of time. The
extension theorem, applied to the corresponding first-order systems for
(x,x¢), then implies that the solutions exist globally for all ¢ € R.

e In fact, if V(x) = 2*, all non-zero solutions are periodic functions of ¢
(as is, strictly speaking, the zero solution).

o If V(z) = —2* then

1

—mxtz — 2 = constant,
2
but this does not imply that x, x; remain bounded, so there is no

conclusion from the extension theorem.



e In fact, if V(z) = —2* and ima} — 2* = Ej, where

1
Ey = émvg — :L‘é, z(0) = zo, 24(0) = vy,

then x(t) satisfies the first order ODE

2
r, ==+ — (Eo + %), x(0) = xg

with an appropriate choice of the sign.

e If Fy # 0, then solutions of this ODE (whose right hand side grows like
2?) go off to infinity in finite time both as t = —oo and t — oo. The
(unstable) equilibrium solution z(t) = 0 exists for all time. Finally, if
Ey = 0 and z(t) # 0, then: when zg, vy have the same sign, solutions
go off to infinity in finite time as t — oo and approach 0 as t — —o0;
when z(, vg have the opposite sign, solutions approach 0 as ¢t — oo and
blow up at finite negative time.

Remark. The previous statements may be easier to follow if you sketch the
(x, z¢)-phase plane of the system (as we’ll do in class later on).



4. Linearize the Lorenz equations
xy=o0(y —x),
Yy =7rr —Yy —TZ,
z =xy — Pz

about the equilibrium solution (z,y, z) = (0,0, 0). Show that this equilibrium
is linearly stable if » < 1 and linearly unstable if r > 1.

Solution

e We obtain the linearized system is by neglecting the quadratically non-
linear terms, which gives

Tt = U(y - ZU),
Y =TT — Y,
2 = —fz.
In matrix form, this system is
Ty = AY
where 7 = (z,y,2)T and
—o o 0
A= r —1 0
o 0 -p

e The equilibrium (0, 0,0)7 is stable if all eigenvalues of A have negative
real part and unstable if some eigenvalue of A has positive real part.

e We have

—A—o0 o 0
det(A — \I) = r -A—1 0
0 0 -A—0

=—A+8) [N+ (c+ DA+ (1—1)0)].

Hence, the eigenvalues of A are

) A:%{—(a+1)i\/(a+1)2—4(1—r)a}.



e We assume that the parameters o, r, 5 are positive. Then A = —3 <0
is a stable eigenvalue.

e Suppose that r < 1.

— If 4(1 — r)o > (0 + 1)?, then the remaining eigenvalues

)\:—%[(U—I—l):l:ioz], o= /40(1 —7) — (0 + 1)2

are complex with negative real part.
— If0<4(1—r)o < (¢ +1)?, then

0<V(e+1)2—4(1—-7r)o <o +1,
and the remaining eigenvalues are real and negative.
In either case, the equilibrium (0,0,0)7 is stable.

e Suppose that » > 1. Then

Ve +1)2—41—-7r)o>0+1

and therefore

A= [—(a+1)+\/(a+1)2—4(1—r)a] >0

DN | —

so the equilibrium (0,0,0)7 is unstable.

Remark. In the context of the Lorenz equation as a model of a fluid layer
heated from below, this result has the interpretation that when the tem-
perature difference (proportional to the Rayleigh number 7) is sufficiently
small, then a stationary equilibrium in which the fluid is a rest and transfers
heat from bottom to top by conduction is stable. But when the tempera-
ture difference is too large, this equilibrium becomes unstable, leading to a
convective motion.



