Problem set 1
 Math 207A, Fall 2011

Solutions

1. Write the IVP for the forced, damped pendulum

$$
\begin{aligned}
& x_{t t}+\delta x_{t}+\omega_{0}^{2} \sin x=\gamma \cos \omega t, \\
& x(0)=x_{0}, \quad x_{t}(0)=v_{0}
\end{aligned}
$$

as an IVP for an autonomous first-order system. What is the dimension of the system?

Solution

- Introduce variables (x, v, s) where $v=x_{t}, s=t$. Then

$$
\begin{aligned}
& x_{t}=v, \\
& v_{t}=-\delta v-\omega_{0}^{2} \sin x+\gamma \cos \omega s, \\
& s_{t}=1
\end{aligned}
$$

with initial conditions

$$
x(0)=x_{0}, \quad v(0)=v_{0}, \quad s(0)=0 .
$$

Remark. Since the phase space is three-dimensional, chaotic behavior is possible, and indeed it occurs in suitable parameter regimes.
2. Solve the scalar IVP

$$
x_{t}=x(\log x)^{\alpha}, \quad x(0)=x_{0}
$$

where $\alpha>0$ and $x_{0}>1$. Find the maximal time-interval on which the solution exists. For what values of α does the solution exist for all times?

Solution

- Separating variables, we get

$$
\int \frac{1}{x(\log x)^{\alpha}} d x=\int d t
$$

To compute the x-integral, use the substitution $u=\log x$, which gives

$$
\int \frac{1}{u^{\alpha}} d u=t+C
$$

where C is a constant of integration.

- If $\alpha \neq 1$, the solution is

$$
\frac{1}{1-\alpha} u^{1-\alpha}=t+C
$$

The initial condition implies that

$$
C=\frac{1}{1-\alpha}\left(\log x_{0}\right)^{1-\alpha}
$$

so

$$
x(t)=\exp \left\{\left[(1-\alpha) t+\left(\log x_{0}\right)^{1-\alpha}\right]^{1 /(1-\alpha)}\right\}
$$

Note that $\log x_{0}>0$ since $x_{0}>1$.

- If $0<\alpha<1$, the solution exists for all $0 \leq t<\infty$.
- If $\alpha>1$ the solution exists only for a finite time interval $0 \leq t<T$ where $T>0$ is given by

$$
T=\frac{1}{(\alpha-1)\left(\log x_{0}\right)^{\alpha-1}}
$$

- If $\alpha=1$, the solution is

$$
x(t)=\exp \left[\left(\log x_{0}\right) \exp t\right] .
$$

The solution exist for all t, although it grows very rapidly (doubly exponentially) as $t \rightarrow \infty$.

Remark. Note that the solution of $x_{t}=x \log x$ exists globally in time even though the right-hand side grows faster than a linear function of x, albeit by a slowly growing logarithmic factor. Any higher power of $\log x$, however, leads to solutions that blow up in finite time.
3. The position $x(t) \in \mathbb{R}$ of a particle of mass m moving in one space dimension in a potential $V(x)$ satisfies

$$
m x_{t t}=-V^{\prime}(x)
$$

where the prime denotes a derivative with respect to x. Show that the total energy

$$
\frac{1}{2} m x_{t}^{2}+V(x)=\text { constant }
$$

is conserved. What can you say about the time-interval of existence of solutions for: (a) the attractive potential $V(x)=x^{4}$; (b) the repulsive potential $V(x)=-x^{4}$?

Solution

- Using the chain rule and the ODE, we get

$$
\begin{aligned}
\frac{d}{d t}\left[\frac{1}{2} m x_{t}^{2}+V(x)\right] & =m x_{t} x_{t t}+V^{\prime}(x) x_{t} \\
& =-x_{t} V^{\prime}(x)+V^{\prime}(x) x_{t} \\
& =0
\end{aligned}
$$

Hence the total energy is constant.

- If $V(x)=x^{4}$ then

$$
\frac{1}{2} m x_{t}^{2}+x^{4}=\text { constant }
$$

which implies that both x, x_{t} are bounded functions of time. The extension theorem, applied to the corresponding first-order systems for $\left(x, x_{t}\right)$, then implies that the solutions exist globally for all $t \in \mathbb{R}$.

- In fact, if $V(x)=x^{4}$, all non-zero solutions are periodic functions of t (as is, strictly speaking, the zero solution).
- If $V(x)=-x^{4}$ then

$$
\frac{1}{2} m x_{t}^{2}-x^{4}=\text { constant }
$$

but this does not imply that x, x_{t} remain bounded, so there is no conclusion from the extension theorem.

- In fact, if $V(x)=-x^{4}$ and $\frac{1}{2} m x_{t}^{2}-x^{4}=E_{0}$, where

$$
E_{0}=\frac{1}{2} m v_{0}^{2}-x_{0}^{4}, \quad x(0)=x_{0}, \quad x_{t}(0)=v_{0}
$$

then $x(t)$ satisfies the first order ODE

$$
x_{t}= \pm \sqrt{\frac{2}{m}\left(E_{0}+x^{4}\right)}, \quad x(0)=x_{0}
$$

with an appropriate choice of the sign.

- If $E_{0} \neq 0$, then solutions of this ODE (whose right hand side grows like x^{2}) go off to infinity in finite time both as $t \rightarrow-\infty$ and $t \rightarrow \infty$. The (unstable) equilibrium solution $x(t)=0$ exists for all time. Finally, if $E_{0}=0$ and $x(t) \neq 0$, then: when x_{0}, v_{0} have the same sign, solutions go off to infinity in finite time as $t \rightarrow \infty$ and approach 0 as $t \rightarrow-\infty$; when x_{0}, v_{0} have the opposite sign, solutions approach 0 as $t \rightarrow \infty$ and blow up at finite negative time.

Remark. The previous statements may be easier to follow if you sketch the (x, x_{t})-phase plane of the system (as we'll do in class later on).
4. Linearize the Lorenz equations

$$
\begin{aligned}
& x_{t}=\sigma(y-x), \\
& y_{t}=r x-y-x z, \\
& z_{t}=x y-\beta z
\end{aligned}
$$

about the equilibrium solution $(x, y, z)=(0,0,0)$. Show that this equilibrium is linearly stable if $r<1$ and linearly unstable if $r>1$.

Solution

- We obtain the linearized system is by neglecting the quadratically nonlinear terms, which gives

$$
\begin{aligned}
x_{t} & =\sigma(y-x), \\
y_{t} & =r x-y, \\
z_{t} & =-\beta z .
\end{aligned}
$$

In matrix form, this system is

$$
\vec{x}_{t}=A \vec{x}
$$

where $\vec{x}=(x, y, z)^{T}$ and

$$
A=\left(\begin{array}{ccc}
-\sigma & \sigma & 0 \\
r & -1 & 0 \\
0 & 0 & -\beta
\end{array}\right)
$$

- The equilibrium $(0,0,0)^{T}$ is stable if all eigenvalues of A have negative real part and unstable if some eigenvalue of A has positive real part.
- We have

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\left|\begin{array}{ccc}
-\lambda-\sigma & \sigma & 0 \\
r & -\lambda-1 & 0 \\
0 & 0 & -\lambda-\beta
\end{array}\right| \\
& \left.=-(\lambda+\beta)\left[\lambda^{2}+(\sigma+1) \lambda+(1-r) \sigma\right)\right] .
\end{aligned}
$$

Hence, the eigenvalues of A are

$$
\lambda=-\beta, \quad \lambda=\frac{1}{2}\left[-(\sigma+1) \pm \sqrt{(\sigma+1)^{2}-4(1-r) \sigma}\right] .
$$

- We assume that the parameters σ, r, β are positive. Then $\lambda=-\beta<0$ is a stable eigenvalue.
- Suppose that $r<1$.
- If $4(1-r) \sigma>(\sigma+1)^{2}$, then the remaining eigenvalues

$$
\lambda=-\frac{1}{2}[(\sigma+1) \pm i \alpha], \quad \alpha=\sqrt{4 \sigma(1-r)-(\sigma+1)^{2}}
$$

are complex with negative real part.

- If $0 \leq 4(1-r) \sigma<(\sigma+1)^{2}$, then

$$
0 \leq \sqrt{(\sigma+1)^{2}-4(1-r) \sigma}<\sigma+1,
$$

and the remaining eigenvalues are real and negative.
In either case, the equilibrium $(0,0,0)^{T}$ is stable.

- Suppose that $r>1$. Then

$$
\sqrt{(\sigma+1)^{2}-4(1-r) \sigma}>\sigma+1
$$

and therefore

$$
\lambda=\frac{1}{2}\left[-(\sigma+1)+\sqrt{(\sigma+1)^{2}-4(1-r) \sigma}\right]>0
$$

so the equilibrium $(0,0,0)^{T}$ is unstable.

Remark. In the context of the Lorenz equation as a model of a fluid layer heated from below, this result has the interpretation that when the temperature difference (proportional to the Rayleigh number r) is sufficiently small, then a stationary equilibrium in which the fluid is a rest and transfers heat from bottom to top by conduction is stable. But when the temperature difference is too large, this equilibrium becomes unstable, leading to a convective motion.

