
Problem set 1
Math 207A, Fall 2011

Solutions

1. Write the IVP for the forced, damped pendulum

xtt + δxt + ω2
0 sinx = γ cosωt,

x(0) = x0, xt(0) = v0

as an IVP for an autonomous first-order system. What is the dimension of
the system?

Solution

• Introduce variables (x, v, s) where v = xt, s = t. Then

xt = v,

vt = −δv − ω2
0 sinx+ γ cosωs,

st = 1,

with initial conditions

x(0) = x0, v(0) = v0, s(0) = 0.

Remark. Since the phase space is three-dimensional, chaotic behavior is
possible, and indeed it occurs in suitable parameter regimes.



2. Solve the scalar IVP

xt = x(log x)α, x(0) = x0

where α > 0 and x0 > 1. Find the maximal time-interval on which the
solution exists. For what values of α does the solution exist for all times?

Solution

• Separating variables, we get∫
1

x(log x)α
dx =

∫
dt

To compute the x-integral, use the substitution u = log x, which gives∫
1

uα
du = t+ C

where C is a constant of integration.

• If α 6= 1, the solution is

1

1− α
u1−α = t+ C.

The initial condition implies that

C =
1

1− α
(log x0)

1−α,

so
x(t) = exp

{[
(1− α)t+ (log x0)

1−α]1/(1−α)} .
Note that log x0 > 0 since x0 > 1.

• If 0 < α < 1, the solution exists for all 0 ≤ t <∞.

• If α > 1 the solution exists only for a finite time interval 0 ≤ t < T
where T > 0 is given by

T =
1

(α− 1)(log x0)α−1
.



• If α = 1, the solution is

x(t) = exp [(log x0) exp t] .

The solution exist for all t, although it grows very rapidly (doubly
exponentially) as t→∞.

Remark. Note that the solution of xt = x log x exists globally in time even
though the right-hand side grows faster than a linear function of x, albeit
by a slowly growing logarithmic factor. Any higher power of log x, however,
leads to solutions that blow up in finite time.



3. The position x(t) ∈ R of a particle of mass m moving in one space
dimension in a potential V (x) satisfies

mxtt = −V ′(x)

where the prime denotes a derivative with respect to x. Show that the total
energy

1

2
mx2t + V (x) = constant

is conserved. What can you say about the time-interval of existence of solu-
tions for: (a) the attractive potential V (x) = x4; (b) the repulsive potential
V (x) = −x4?

Solution

• Using the chain rule and the ODE, we get

d

dt

[
1

2
mx2t + V (x)

]
= mxtxtt + V ′(x)xt

= −xtV ′(x) + V ′(x)xt

= 0.

Hence the total energy is constant.

• If V (x) = x4 then
1

2
mx2t + x4 = constant,

which implies that both x, xt are bounded functions of time. The
extension theorem, applied to the corresponding first-order systems for
(x, xt), then implies that the solutions exist globally for all t ∈ R.

• In fact, if V (x) = x4, all non-zero solutions are periodic functions of t
(as is, strictly speaking, the zero solution).

• If V (x) = −x4 then

1

2
mx2t − x4 = constant,

but this does not imply that x, xt remain bounded, so there is no
conclusion from the extension theorem.



• In fact, if V (x) = −x4 and 1
2
mx2t − x4 = E0, where

E0 =
1

2
mv20 − x40, x(0) = x0, xt(0) = v0,

then x(t) satisfies the first order ODE

xt = ±
√

2

m
(E0 + x4), x(0) = x0

with an appropriate choice of the sign.

• If E0 6= 0, then solutions of this ODE (whose right hand side grows like
x2) go off to infinity in finite time both as t → −∞ and t → ∞. The
(unstable) equilibrium solution x(t) = 0 exists for all time. Finally, if
E0 = 0 and x(t) 6= 0, then: when x0, v0 have the same sign, solutions
go off to infinity in finite time as t → ∞ and approach 0 as t → −∞;
when x0, v0 have the opposite sign, solutions approach 0 as t→∞ and
blow up at finite negative time.

Remark. The previous statements may be easier to follow if you sketch the
(x, xt)-phase plane of the system (as we’ll do in class later on).



4. Linearize the Lorenz equations

xt = σ(y − x),

yt = rx− y − xz,
zt = xy − βz

about the equilibrium solution (x, y, z) = (0, 0, 0). Show that this equilibrium
is linearly stable if r < 1 and linearly unstable if r > 1.

Solution

• We obtain the linearized system is by neglecting the quadratically non-
linear terms, which gives

xt = σ(y − x),

yt = rx− y,
zt = −βz.

In matrix form, this system is

~xt = A~x

where ~x = (x, y, z)T and

A =

 −σ σ 0
r −1 0
0 0 −β

 .

• The equilibrium (0, 0, 0)T is stable if all eigenvalues of A have negative
real part and unstable if some eigenvalue of A has positive real part.

• We have

det(A− λI) =

∣∣∣∣∣∣
−λ− σ σ 0

r −λ− 1 0
0 0 −λ− β

∣∣∣∣∣∣
= −(λ+ β)

[
λ2 + (σ + 1)λ+ (1− r)σ)

]
.

Hence, the eigenvalues of A are

λ = −β, λ =
1

2

[
−(σ + 1)±

√
(σ + 1)2 − 4(1− r)σ

]
.



• We assume that the parameters σ, r, β are positive. Then λ = −β < 0
is a stable eigenvalue.

• Suppose that r < 1.

– If 4(1− r)σ > (σ + 1)2, then the remaining eigenvalues

λ = −1

2
[(σ + 1)± iα] , α =

√
4σ(1− r)− (σ + 1)2

are complex with negative real part.

– If 0 ≤ 4(1− r)σ < (σ + 1)2, then

0 ≤
√

(σ + 1)2 − 4(1− r)σ < σ + 1,

and the remaining eigenvalues are real and negative.

In either case, the equilibrium (0, 0, 0)T is stable.

• Suppose that r > 1. Then√
(σ + 1)2 − 4(1− r)σ > σ + 1

and therefore

λ =
1

2

[
−(σ + 1) +

√
(σ + 1)2 − 4(1− r)σ

]
> 0

so the equilibrium (0, 0, 0)T is unstable.

Remark. In the context of the Lorenz equation as a model of a fluid layer
heated from below, this result has the interpretation that when the tem-
perature difference (proportional to the Rayleigh number r) is sufficiently
small, then a stationary equilibrium in which the fluid is a rest and transfers
heat from bottom to top by conduction is stable. But when the tempera-
ture difference is too large, this equilibrium becomes unstable, leading to a
convective motion.


