
Problem set 2
Math 207A, Fall 2011

Solutions

1. Solve the IVP for the logistic equation

xt = x(1− x), x(0) = x0.

Solution

• Separation of variables gives∫
dx

x(1− x)
=

∫
dt

Using the partial fractions decomposition

1

x(1− x)
=

1

x
+

1

1− x

to evaluate the x-integral, we get

log

∣∣∣∣ x

1− x

∣∣∣∣ = t+ C,

which implies that
x

1− x
= Aet

where A = ±eC is a constant of integration.

• Setting t = 0 and using the initial condition, we get

A =
x0

1− x0

provided that x0 6= 1, and then the solution for x is

x(t) =
x0e

t

1− x0 + x0et
.

This also gives the correct solution x(t) = 1 if x0 = 1.



2. Consider bacterial growth in a closed flask with a fixed initial amount of
nutrient, and suppose that the growth rate of the bacteria is proportional to
the amount of available nutrient. If N(t) denotes the population of bacteria
and C(t) denotes the available nutrient at time t, explain why the ODEs

Nt = µCN, Ct = −αµCN

provide a reasonable model for suitable constants α, µ > 0. Solve the system
subject to the initial conditions

N(0) = N0, C(0) = C0

where N0, C0 > 0. Express the limiting population of bacteria

N∞ = lim
t→∞

N(t)

in terms of α, µ, N0, C0. Does your answer make sense?

Solution

• The equation
Nt = µCN (1)

states that the growth rate µC of bacteria is proportional to the nutri-
ent amount C.

• We assume that the nutrient is consumed at a rate proportional to
the growth rate of the bacteria (neglecting any uptake of nutrient that
might be required to sustain the population at a constant level). This
gives

Ct = −αNt (2)

where α > 0 is a constant of proportionality. Use of the equation for
Nt gives

Ct = −αµCN.

• We solve this system by eliminating C. From (2), we have

d

dt
(C + αN) = 0,

which implies that
C + αN = B0 (3)



where B0 is a constant of integration. From the initial condition,

B0 = C0 + αN0.

Equation (3) states that any decrease in the nutrient amount C is
compensated by a proportional increase in the bacterial population N .

• Using (3) to express C in terms of N in (1), we get

Nt = µN (B0 − αN) .

Thus, this model of population growth with limited resources leads to
a logistic equation for N .

• Solving the logistic equation as in Problem 1, we get

N(t) =
N0B0e

µB0t

B0 − αN0 + αN0eµB0t
.

• If N0 > 0, then as t→∞ the solution approaches the limiting popula-
tion N∞ = B0/α or

N∞ = N0 +
C0

α

i.e. the initial population plus the population increase obtained by con-
sumption of all of the nutrient.



3. Let

f(x) =

{
x2 sin(1/x) x 6= 0,

0 x = 0.

Find the equilibria of the ODE xt = f(x) and determine their stability, and
sketch the phase line.

Solution

• The equilibria are

x = 0, x =
1

nπ

where n ∈ Z is any nonzero integer. There is an infinite sequence of
equilibria x = 1/(nπ) that approach the equilibrium x = 0 as n→∞.

• For x 6= 0, we have

f ′(x) = − cos

(
1

x

)
+ 2x sin

(
1

x

)
.

Thus,

f ′
(

1

nπ

)
= − cos(nπ) = (−1)n+1.

It follows that the equilibrium x = 1/(nπ) is asymptotically stable
if n is even, when f ′(1/(nπ) < 0, and unstable if n is odd, when
f ′(1/(nπ) > 0.

• The function f is differentiable, but not continuously differentiable, at
the origin with

f ′(0) = lim
h→0

[
h2 sin(1/h)− 0

h

]
= 0,

so we cannot tell the stability of x = 0 from the sign of the derivative.

• Instead, note that if the initial condition is perturbed slightly from
0, the solution will approach the closest stable equilibrium to the ini-
tial data, but will not move further away from the origin. Thus the
equilibrium x = 0 is stable but not asymptotically stable.



4. Graph the bifurcation diagram for equilibrium solutions of the scalar ODE

xt = µ+ x− x3

versus µ and determine their stability. (You don’t have to give an explicit
expression for the equilibria.) Find the values of (x, µ) at which equilibrium
bifurcations occur. What kind of bifurcations are they? Sketch the phase
line of the system for different values of µ, including the values at which bi-
furcations occur. Describe what would happen if the system is in equilibrium
and µ is increased very slowly from µ = −1 to µ = 1 and then decreased
back to µ = −1.

Solution

• There is a cubic curve of equilibria as a function of µ,

f(x;µ) = 0, f(x;µ) = µ+ x− x3.

The necessary condition fx = 0 for an equilibrium bifurcation is

1− 3x2 = 0.

So the possible bifurcation points are

(x, µ) =

(
− 1√

3
,

2

3
√

3

)
,

(
1√
3
,− 2

3
√

3

)
.

• Sketching f shows that there is a unique globally asymptotically stable
equilibrium if |µ| > 2/(3

√
3), and three equilibria if |µ| < 2/(3

√
3). The

‘outside’ ones are asymptotically stable and the middle one is unstable.

• Writing

x = − 1√
3

+ x1 + . . . , µ =
2

3
√

3
+ µ1 + . . .

we find that the Taylor expansion of f about the bifurcation point is

f(x;µ) = µ1 +
√

3x21 + . . . .

Thus, there is a subcritical saddle-node bifurcation at

(x, µ) =

(
− 1√

3
,

2

3
√

3

)
.



Similarly, there is a supercritical saddle-node bifurcation at

(x, µ) =

(
1√
3
,− 2

3
√

3

)
.

• When µ is increased quasi-statically from µ = −1, the system will stay
on the lower branch of stable equilibria until it is destroyed by the
saddle-node bifurcation at µ = 2/(3

√
3). The system will then jump

to the upper stable equilibrium and move along the upper branch as µ
is increased further. When µ is decreased from µ = 1, the system will
stay on the upper stable branch until it is destroyed by the saddle-node
bifurcation at µ = −2/(3

√
3). It will then jump back down to the lower

stable equilibrium and stay on that branch as µ is decreased further.

• Note that reversing the changes in µ do not reverse the changes in the
system, a phenomenon that is referred to as hysteresis.


